DeepFoveaNet : Deep Fovea Eagle-Eye Bioinspired Model to Detect Moving Objects

Birds of prey especially eagles and hawks have a visual acuity two to five times better than humans. Among the peculiar characteristics of their biological vision are that they have two types of foveae; one shallow fovea used in their binocular vision, and a deep fovea for monocular vision. The deep...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 7090-7100
1. Verfasser: Guzman-Pando, Abimael (VerfasserIn)
Weitere Verfasser: Chacon-Murguia, Mario I
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM328961795
003 DE-627
005 20231225204053.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3101398  |2 doi 
028 5 2 |a pubmed24n1096.xml 
035 |a (DE-627)NLM328961795 
035 |a (NLM)34351859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guzman-Pando, Abimael  |e verfasserin  |4 aut 
245 1 0 |a DeepFoveaNet  |b Deep Fovea Eagle-Eye Bioinspired Model to Detect Moving Objects 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.10.2021 
500 |a Date Revised 07.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Birds of prey especially eagles and hawks have a visual acuity two to five times better than humans. Among the peculiar characteristics of their biological vision are that they have two types of foveae; one shallow fovea used in their binocular vision, and a deep fovea for monocular vision. The deep fovea allows these birds to see objects at long distances and to identify them as possible prey. Inspired by the biological functioning of the deep fovea a model called DeepFoveaNet is proposed in this paper. DeepFoveaNet is a convolutional neural network model to detect moving objects in video sequences. DeepFoveaNet emulates the monocular vision of birds of prey through two Encoder-Decoder convolutional neural network modules. This model combines the capacity of magnification of the deep fovea and the context information of the peripheral vision. Unlike algorithms to detect moving objects, ranked in the first places of the Change Detection database (CDnet14), DeepFoveaNet does not depend on previously trained neural networks, neither on a huge number of training images for its training. Besides, its architecture allows it to learn spatiotemporal information of the video. DeepFoveaNet was evaluated in the CDnet14 database achieving high performance and was ranked as one of the ten best algorithms. The characteristics and results of DeepFoveaNet demonstrated that the model is comparable to the state-of-the-art algorithms to detect moving objects, and it can detect very small moving objects through its deep fovea model that other algorithms cannot detect 
650 4 |a Journal Article 
700 1 |a Chacon-Murguia, Mario I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 7090-7100  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:7090-7100 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3101398  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 7090-7100