Deep Dichromatic Model Estimation Under AC Light Sources

The dichromatic reflection model has been popularly exploited for computer vison tasks, such as color constancy and highlight removal. However, dichromatic model estimation is an severely ill-posed problem. Thus, several assumptions have been commonly made to estimate the dichromatic model, such as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 7064-7073
1. Verfasser: Yoo, Jun-Sang (VerfasserIn)
Weitere Verfasser: Lee, Chan-Ho, Kim, Jong-Ok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM328961787
003 DE-627
005 20231225204053.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3100550  |2 doi 
028 5 2 |a pubmed24n1096.xml 
035 |a (DE-627)NLM328961787 
035 |a (NLM)34351857 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yoo, Jun-Sang  |e verfasserin  |4 aut 
245 1 0 |a Deep Dichromatic Model Estimation Under AC Light Sources 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The dichromatic reflection model has been popularly exploited for computer vison tasks, such as color constancy and highlight removal. However, dichromatic model estimation is an severely ill-posed problem. Thus, several assumptions have been commonly made to estimate the dichromatic model, such as white-light (highlight removal) and the existence of highlight regions (color constancy). In this paper, we propose a spatio-temporal deep network to estimate the dichromatic parameters under AC light sources. The minute illumination variations can be captured with high-speed camera. The proposed network is composed of two sub-network branches. From high-speed video frames, each branch generates chromaticity and coefficient matrices, which correspond to the dichromatic image model. These two separate branches are jointly learned by spatio-temporal regularization. As far as we know, this is the first work that aims to estimate all dichromatic parameters in computer vision. To validate the model estimation accuracy, it is applied to color constancy and highlight removal. Both experimental results show that the dichromatic model can be estimated accurately via the proposed deep network 
650 4 |a Journal Article 
700 1 |a Lee, Chan-Ho  |e verfasserin  |4 aut 
700 1 |a Kim, Jong-Ok  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 7064-7073  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:7064-7073 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3100550  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 7064-7073