Maximum likelihood estimation for the proportional odds model with mixed interval-censored failure time data

This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times ar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 48(2020), 8 vom: 30., Seite 1496-1512
1. Verfasser: Zhu, Liang (VerfasserIn)
Weitere Verfasser: Tong, Xingwei, Cai, Dingjiao, Li, Yimei, Sun, Ryan, Srivastava, Deo K, Hudson, Melissa M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Maximum likelihood estimation Proportional odds model mixed interval-censored data
LEADER 01000naa a22002652 4500
001 NLM328937053
003 DE-627
005 20231225204021.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1789077  |2 doi 
028 5 2 |a pubmed24n1096.xml 
035 |a (DE-627)NLM328937053 
035 |a (NLM)34349336 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Liang  |e verfasserin  |4 aut 
245 1 0 |a Maximum likelihood estimation for the proportional odds model with mixed interval-censored failure time data 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times are commonly found in the two largest studies of long-term survivorship after childhood cancer, the datasets that motivated this work. However, most existing methods for failure time data consider only right-censored or only interval-censored failure times, not the more general case where times may be mixed. Additionally, among regression models developed for mixed interval-censored failure times, the proportional hazards formulation is generally assumed. It is well-known that the proportional hazards model may be inappropriate in certain situations, and alternatives are needed to analyze mixed failure time data in such cases. To fill this need, we develop a maximum likelihood estimation procedure for the proportional odds regression model with mixed interval-censored data. We show that the resulting estimators are consistent and asymptotically Gaussian. An extensive simulation study is performed to assess the finite-sample properties of the method, and this investigation indicates that the proposed method works well for many practical situations. We then apply our approach to examine the impact of age at cranial radiation therapy on risk of growth hormone deficiency in long-term survivors of childhood cancer 
650 4 |a Journal Article 
650 4 |a Maximum likelihood estimation 
650 4 |a Proportional odds model 
650 4 |a mixed interval-censored data 
700 1 |a Tong, Xingwei  |e verfasserin  |4 aut 
700 1 |a Cai, Dingjiao  |e verfasserin  |4 aut 
700 1 |a Li, Yimei  |e verfasserin  |4 aut 
700 1 |a Sun, Ryan  |e verfasserin  |4 aut 
700 1 |a Srivastava, Deo K  |e verfasserin  |4 aut 
700 1 |a Hudson, Melissa M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 48(2020), 8 vom: 30., Seite 1496-1512  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:48  |g year:2020  |g number:8  |g day:30  |g pages:1496-1512 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1789077  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2020  |e 8  |b 30  |h 1496-1512