Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory

© 2021 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 42(2021), 27 vom: 15. Okt., Seite 1959-1973
1. Verfasser: Garcia-Ratés, Miquel (VerfasserIn)
Weitere Verfasser: Becker, Ute, Neese, Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article C-PCM DLPNO coupled-cluster implicit solvation
LEADER 01000naa a22002652 4500
001 NLM32892282X
003 DE-627
005 20231225204003.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26726  |2 doi 
028 5 2 |a pubmed24n1096.xml 
035 |a (DE-627)NLM32892282X 
035 |a (NLM)34347890 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Garcia-Ratés, Miquel  |e verfasserin  |4 aut 
245 1 0 |a Implicit solvation in domain based pair natural orbital coupled cluster (DLPNO-CCSD) theory 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a A nearly linear scaling implementation of coupled-cluster with singles and doubles excitations (CCSD) can be achieved by means of the domain-based local pair natural orbital (DLPNO) method. The combination of DLPNO-CCSD with implicit solvation methods allows the calculation of accurate energies and chemical properties of solvated systems at an affordable computational cost. We have efficiently implemented different schemes within the conductor-like polarizable continuum model (C-PCM) for DLPNO-CCSD in the ORCA quantum chemistry suite. In our implementation, the overhead due to the additional solvent terms amounts to less than 5% of the time the equivalent gas phase job takes. Our results for organic neutrals and open-shell ions in water show that for most systems, adding solvation terms to the coupled-cluster amplitudes equations and to the energy leads to small changes in the total energy compared to only considering solvated orbitals and corrections to the reference energy. However, when the solute contains certain functional groups, such as carbonyl or nitrile groups, the changes in the energy are larger and estimated to be around 0.04 and 0.02 kcal/mol for each carbonyl and nitrile group in the solute, respectively. For solutes containing metals, the use of accurate CC/C-PCM schemes is crucial to account for correlation solvation effects. Simultaneously, we have calculated the electrostatic component of the solvation energy for neutrals and ions in water for the different DLPNO-CCSD/C-PCM schemes. We observe negligible changes in the deviation between DLPNO-CCSD and canonical-CCSD data. Here, DLPNO-CCSD results outperform those for Hartree-Fock and density functional theory calculations 
650 4 |a Journal Article 
650 4 |a C-PCM 
650 4 |a DLPNO 
650 4 |a coupled-cluster 
650 4 |a implicit solvation 
700 1 |a Becker, Ute  |e verfasserin  |4 aut 
700 1 |a Neese, Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 42(2021), 27 vom: 15. Okt., Seite 1959-1973  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:42  |g year:2021  |g number:27  |g day:15  |g month:10  |g pages:1959-1973 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26726  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2021  |e 27  |b 15  |c 10  |h 1959-1973