Detailed Avatar Recovery From Single Image

This paper presents a novel framework to recover detailed avatar from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, texture, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric-based template tha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 04. Nov., Seite 7363-7379
1. Verfasser: Zhu, Hao (VerfasserIn)
Weitere Verfasser: Zuo, Xinxin, Yang, Haotian, Wang, Sen, Cao, Xun, Yang, Ruigang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM328919926
003 DE-627
005 20231225203959.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3102128  |2 doi 
028 5 2 |a pubmed24n1096.xml 
035 |a (DE-627)NLM328919926 
035 |a (NLM)34347594 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Hao  |e verfasserin  |4 aut 
245 1 0 |a Detailed Avatar Recovery From Single Image 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.10.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper presents a novel framework to recover detailed avatar from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, texture, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric-based template that lacks the surface details. As such resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of the parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. Our method can restore detailed human body shapes with complete textures beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zuo, Xinxin  |e verfasserin  |4 aut 
700 1 |a Yang, Haotian  |e verfasserin  |4 aut 
700 1 |a Wang, Sen  |e verfasserin  |4 aut 
700 1 |a Cao, Xun  |e verfasserin  |4 aut 
700 1 |a Yang, Ruigang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 04. Nov., Seite 7363-7379  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:04  |g month:11  |g pages:7363-7379 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3102128  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 04  |c 11  |h 7363-7379