|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM328919926 |
003 |
DE-627 |
005 |
20231225203959.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2021.3102128
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1096.xml
|
035 |
|
|
|a (DE-627)NLM328919926
|
035 |
|
|
|a (NLM)34347594
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Hao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Detailed Avatar Recovery From Single Image
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.10.2022
|
500 |
|
|
|a Date Revised 19.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper presents a novel framework to recover detailed avatar from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, texture, and viewpoints. Prior methods typically attempt to recover the human body shape using a parametric-based template that lacks the surface details. As such resulting body shape appears to be without clothing. In this paper, we propose a novel learning-based framework that combines the robustness of the parametric model with the flexibility of free-form 3D deformation. We use the deep neural networks to refine the 3D shape in a Hierarchical Mesh Deformation (HMD) framework, utilizing the constraints from body joints, silhouettes, and per-pixel shading information. Our method can restore detailed human body shapes with complete textures beyond skinned models. Experiments demonstrate that our method has outperformed previous state-of-the-art approaches, achieving better accuracy in terms of both 2D IoU number and 3D metric distance
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Zuo, Xinxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Haotian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Sen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cao, Xun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Ruigang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 11 vom: 04. Nov., Seite 7363-7379
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:11
|g day:04
|g month:11
|g pages:7363-7379
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2021.3102128
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 11
|b 04
|c 11
|h 7363-7379
|