|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM328865435 |
003 |
DE-627 |
005 |
20231225203849.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202101216
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1096.xml
|
035 |
|
|
|a (DE-627)NLM328865435
|
035 |
|
|
|a (NLM)34342046
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Park, Chungseong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal-Organic Frameworks via Site-Specific Nucleation
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Conductive metal-organic frameworks (cMOFs) are emerging materials for various applications due to their high surface area, high porosity, and electrical conductivity. However, it is still challenging to develop cMOFs having high surface reactivity and durability. Here, highly active and stable cMOF are presented via the confinement of bimetallic nanoparticles (BNPs) in the pores of a 2D cMOF, where the confinement is guided by dipolar-interaction-induced site-specific nucleation. Heterogeneous metal precursors are bound to the pores of 2D cMOFs by dipolar interactions, and the subsequent reduction produces ultrasmall (≈1.54 nm) and well-dispersed PtRu NPs confined in the pores of the cMOF. PtRu-NP-decorated cMOFs exhibit significantly enhanced chemiresistive NO2 sensing performances, owing to the bimetallic synergies of PtRu NPs and the high surface area and porosity of cMOF. The approach paves the way for the synthesis of highly active and conductive porous materials via bimetallic and/or multimetallic NP loading
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bimetallic nanoparticles
|
650 |
|
4 |
|a conductive porous materials
|
650 |
|
4 |
|a metal-organic frameworks
|
650 |
|
4 |
|a nanoparticles
|
650 |
|
4 |
|a sensors
|
700 |
1 |
|
|a Koo, Won-Tae
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chong, Sanggyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shin, Hamin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Yoon Hwa
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cho, Hee-Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jang, Ji-Soo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Dong-Ha
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Jiyoung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Seyeon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ko, Jaehyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jihan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Il-Doo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 38 vom: 20. Sept., Seite e2101216
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:38
|g day:20
|g month:09
|g pages:e2101216
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202101216
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 38
|b 20
|c 09
|h e2101216
|