S4 : Self-Supervised Learning of Spatiotemporal Similarity

We introduce an ML-driven approach that enables interactive example-based queries for similar behavior in ensembles of spatiotemporal scientific data. This addresses an important use case in the visual exploration of simulation and experimental data, where data is often large, unlabeled and has no m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 03. Dez., Seite 4713-4727
1. Verfasser: Tkachev, Gleb (VerfasserIn)
Weitere Verfasser: Frey, Steffen, Ertl, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We introduce an ML-driven approach that enables interactive example-based queries for similar behavior in ensembles of spatiotemporal scientific data. This addresses an important use case in the visual exploration of simulation and experimental data, where data is often large, unlabeled and has no meaningful similarity measures available. We exploit the fact that nearby locations often exhibit similar behavior and train a Siamese Neural Network in a self-supervised fashion, learning an expressive latent space for spatiotemporal behavior. This space can be used to find similar behavior with just a few user-provided examples. We evaluate this approach on several ensemble datasets and compare with multiple existing methods, showing both qualitative and quantitative results
Beschreibung:Date Revised 27.10.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2021.3101418