A deep-learning-based framework for severity assessment of COVID-19 with CT images

© 2021 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 185(2021) vom: 15. Dez., Seite 115616
1. Verfasser: Li, Zhidan (VerfasserIn)
Weitere Verfasser: Zhao, Shixuan, Chen, Yang, Luo, Fuya, Kang, Zhiqing, Cai, Shengping, Zhao, Wei, Liu, Jun, Zhao, Di, Li, Yongjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article COVID-19 Clinical metadata Deep learning Dual-Siamese channels Multi-view lesion Severity assessment
LEADER 01000caa a22002652c 4500
001 NLM328795097
003 DE-627
005 20250302073644.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2021.115616  |2 doi 
028 5 2 |a pubmed25n1095.xml 
035 |a (DE-627)NLM328795097 
035 |a (NLM)34334965 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhidan  |e verfasserin  |4 aut 
245 1 2 |a A deep-learning-based framework for severity assessment of COVID-19 with CT images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Elsevier Ltd. All rights reserved. 
520 |a Millions of positive COVID-19 patients are suffering from the pandemic around the world, a critical step in the management and treatment is severity assessment, which is quite challenging with the limited medical resources. Currently, several artificial intelligence systems have been developed for the severity assessment. However, imprecise severity assessment and insufficient data are still obstacles. To address these issues, we proposed a novel deep-learning-based framework for the fine-grained severity assessment using 3D CT scans, by jointly performing lung segmentation and lesion segmentation. The main innovations in the proposed framework include: 1) decomposing 3D CT scan into multi-view slices for reducing the complexity of 3D model, 2) integrating prior knowledge (dual-Siamese channels and clinical metadata) into our model for improving the model performance. We evaluated the proposed method on 1301 CT scans of 449 COVID-19 cases collected by us, our method achieved an accuracy of 86.7% for four-way classification, with the sensitivities of 92%, 78%, 95%, 89% for four stages. Moreover, ablation study demonstrated the effectiveness of the major components in our model. This indicates that our method may contribute a potential solution to severity assessment of COVID-19 patients using CT images and clinical metadata 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a Clinical metadata 
650 4 |a Deep learning 
650 4 |a Dual-Siamese channels 
650 4 |a Multi-view lesion 
650 4 |a Severity assessment 
700 1 |a Zhao, Shixuan  |e verfasserin  |4 aut 
700 1 |a Chen, Yang  |e verfasserin  |4 aut 
700 1 |a Luo, Fuya  |e verfasserin  |4 aut 
700 1 |a Kang, Zhiqing  |e verfasserin  |4 aut 
700 1 |a Cai, Shengping  |e verfasserin  |4 aut 
700 1 |a Zhao, Wei  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
700 1 |a Zhao, Di  |e verfasserin  |4 aut 
700 1 |a Li, Yongjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 185(2021) vom: 15. Dez., Seite 115616  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnas 
773 1 8 |g volume:185  |g year:2021  |g day:15  |g month:12  |g pages:115616 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2021.115616  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 185  |j 2021  |b 15  |c 12  |h 115616