Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging

Quantitative phase imaging (QPI) is an emerging label-free technique that produces images containing morphological and dynamical information without contrast agents. Unfortunately, the phase is wrapped in most imaging system. Phase unwrapping is the computational process that recovers a more informa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 7025-7037
1. Verfasser: Yang, Fangshu (VerfasserIn)
Weitere Verfasser: Pham, Thanh-An, Brandenberg, Nathalie, Lutolf, Matthias P, Ma, Jianwei, Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM328737615
003 DE-627
005 20231225203559.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3099956  |2 doi 
028 5 2 |a pubmed24n1095.xml 
035 |a (DE-627)NLM328737615 
035 |a (NLM)34329165 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Fangshu  |e verfasserin  |4 aut 
245 1 0 |a Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.10.2021 
500 |a Date Revised 07.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Quantitative phase imaging (QPI) is an emerging label-free technique that produces images containing morphological and dynamical information without contrast agents. Unfortunately, the phase is wrapped in most imaging system. Phase unwrapping is the computational process that recovers a more informative image. It is particularly challenging with thick and complex samples such as organoids. Recent works that rely on supervised training show that deep learning is a powerful method to unwrap the phase; however, supervised approaches require large and representative datasets which are difficult to obtain for complex biological samples. Inspired by the concept of deep image priors, we propose a deep-learning-based method that does not need any training set. Our framework relies on an untrained convolutional neural network to accurately unwrap the phase while ensuring the consistency of the measurements. We experimentally demonstrate that the proposed method faithfully recovers the phase of complex samples on both real and simulated data. Our work paves the way to reliable phase imaging of thick and complex samples with QPI 
650 4 |a Journal Article 
700 1 |a Pham, Thanh-An  |e verfasserin  |4 aut 
700 1 |a Brandenberg, Nathalie  |e verfasserin  |4 aut 
700 1 |a Lutolf, Matthias P  |e verfasserin  |4 aut 
700 1 |a Ma, Jianwei  |e verfasserin  |4 aut 
700 1 |a Unser, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 15., Seite 7025-7037  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:15  |g pages:7025-7037 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3099956  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 15  |h 7025-7037