Learning With Multiclass AUC : Theory and Algorithms

The Area under the ROC curve (AUC) is a well-known ranking metric for problems such as imbalanced learning and recommender systems. The vast majority of existing AUC-optimization-based machine learning methods only focus on binary-class cases, while leaving the multiclass cases unconsidered. In this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 11 vom: 15. Nov., Seite 7747-7763
1. Verfasser: Yang, Zhiyong (VerfasserIn)
Weitere Verfasser: Xu, Qianqian, Bao, Shilong, Cao, Xiaochun, Huang, Qingming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM328737518
003 DE-627
005 20250302072825.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3101125  |2 doi 
028 5 2 |a pubmed25n1095.xml 
035 |a (DE-627)NLM328737518 
035 |a (NLM)34329155 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Zhiyong  |e verfasserin  |4 aut 
245 1 0 |a Learning With Multiclass AUC  |b Theory and Algorithms 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Area under the ROC curve (AUC) is a well-known ranking metric for problems such as imbalanced learning and recommender systems. The vast majority of existing AUC-optimization-based machine learning methods only focus on binary-class cases, while leaving the multiclass cases unconsidered. In this paper, we start an early trial to consider the problem of learning multiclass scoring functions via optimizing multiclass AUC metrics. Our foundation is based on the M metric, which is a well-known multiclass extension of AUC. We first pay a revisit to this metric, showing that it could eliminate the imbalance issue from the minority class pairs. Motivated by this, we propose an empirical surrogate risk minimization framework to approximately optimize the M metric. Theoretically, we show that: (i) optimizing most of the popular differentiable surrogate losses suffices to reach the Bayes optimal scoring function asymptotically; (ii) the training framework enjoys an imbalance-aware generalization error bound, which pays more attention to the bottleneck samples of minority classes compared with the traditional O(√{1/N}) result. Practically, to deal with the low scalability of the computational operations, we propose acceleration methods for three popular surrogate loss functions, including the exponential loss, squared loss, and hinge loss, to speed up loss and gradient evaluations. Finally, experimental results on 11 real-world datasets demonstrate the effectiveness of our proposed framework. The code is now available at https://github.com/joshuaas/Learning-with-Multiclass-AUC-Theory-and-Algorithms 
650 4 |a Journal Article 
700 1 |a Xu, Qianqian  |e verfasserin  |4 aut 
700 1 |a Bao, Shilong  |e verfasserin  |4 aut 
700 1 |a Cao, Xiaochun  |e verfasserin  |4 aut 
700 1 |a Huang, Qingming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 11 vom: 15. Nov., Seite 7747-7763  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:11  |g day:15  |g month:11  |g pages:7747-7763 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3101125  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 11  |b 15  |c 11  |h 7747-7763