Advanced machine learning application for odor and corrosion control at a water resource recovery facility

© 2021 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 93(2021), 11 vom: 27. Nov., Seite 2346-2359
1. Verfasser: Yang, Fenghua (VerfasserIn)
Weitere Verfasser: Pluth, Thaís Bremm, Fang, Xing, Francq, Kyle Bradley, Jurjovec, Matthew, Tang, Yongning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article corrosion control hydrogen sulfide intelligent water system machine learning odor control sodium hypochlorite volatile fatty acids
LEADER 01000naa a22002652 4500
001 NLM32873263X
003 DE-627
005 20231225203553.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.1618  |2 doi 
028 5 2 |a pubmed24n1095.xml 
035 |a (DE-627)NLM32873263X 
035 |a (NLM)34328667 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Fenghua  |e verfasserin  |4 aut 
245 1 0 |a Advanced machine learning application for odor and corrosion control at a water resource recovery facility 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.11.2021 
500 |a Date Revised 31.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Water Environment Federation. 
520 |a The objective of this study was to develop a machine learning (ML) application to determine the optimal dosage of sodium hypochlorite (NaOCl) to curtail corrosion and odor by H2 S in the headworks of a water resource recovery facility (WRRF) without overly consuming volatile fatty acids (VFAs) that are essential for the enhanced biological phosphorus removal. Given the highly diverse datasets available, three subproblems were formulated, and three cascaded ML modules were developed accordingly. The final ML models, chosen based on performance, were able to predict various targeted variables. More specifically, in Module 1, a recurrent neural network (RNN) was designed to predict wastewater characteristics. In Module 2, a random forest (RF) classifier and a support vector machine (SVM) classifier were built with the information from Module 1 along with other datasets to predict the concentrations of VFAs and H2 S, respectively. Finally, in Module 3, with the information obtained from Module 2, another RF classifier was developed to predict NaOCl dosage to reduce H2 S but keeping VFAs within the target range. These efforts are relevant and informative for WRRFs that are considering developing Intelligent Water Systems to predict the wastewater characteristics to make operational improvements. PRACTITIONER POINTS: A recurrent neural network (RNN) using long short-term memory (LSTM) successfully predicted influent wastewater parameters. A support vector machine classifier predicted hydrogen sulfide (H2 S) with 97.6% accuracy. The concentration of VFAs, an important parameter in EBPR, was predicted using a random forest classifier with 93.4% accuracy. The optimal NaOCl dosage for H2 S control can be predicted with a random forest classifier using H2 S, VFAs, and flow 
650 4 |a Journal Article 
650 4 |a corrosion control 
650 4 |a hydrogen sulfide 
650 4 |a intelligent water system 
650 4 |a machine learning 
650 4 |a odor control 
650 4 |a sodium hypochlorite 
650 4 |a volatile fatty acids 
700 1 |a Pluth, Thaís Bremm  |e verfasserin  |4 aut 
700 1 |a Fang, Xing  |e verfasserin  |4 aut 
700 1 |a Francq, Kyle Bradley  |e verfasserin  |4 aut 
700 1 |a Jurjovec, Matthew  |e verfasserin  |4 aut 
700 1 |a Tang, Yongning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 93(2021), 11 vom: 27. Nov., Seite 2346-2359  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:93  |g year:2021  |g number:11  |g day:27  |g month:11  |g pages:2346-2359 
856 4 0 |u http://dx.doi.org/10.1002/wer.1618  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 93  |j 2021  |e 11  |b 27  |c 11  |h 2346-2359