Interaction-Aware Spatio-Temporal Pyramid Attention Networks for Action Classification

For CNN-based visual action recognition, the accuracy may be increased if local key action regions are focused on. The task of self-attention is to focus on key features and ignore irrelevant information. So, self-attention is useful for action recognition. However, current self-attention methods us...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 01. Okt., Seite 7010-7028
1. Verfasser: Hu, Weiming (VerfasserIn)
Weitere Verfasser: Liu, Haowei, Du, Yang, Yuan, Chunfeng, Li, Bing, Maybank, Stephen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM32859069X
003 DE-627
005 20231225203247.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3100277  |2 doi 
028 5 2 |a pubmed24n1095.xml 
035 |a (DE-627)NLM32859069X 
035 |a (NLM)34314355 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Weiming  |e verfasserin  |4 aut 
245 1 0 |a Interaction-Aware Spatio-Temporal Pyramid Attention Networks for Action Classification 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a For CNN-based visual action recognition, the accuracy may be increased if local key action regions are focused on. The task of self-attention is to focus on key features and ignore irrelevant information. So, self-attention is useful for action recognition. However, current self-attention methods usually ignore correlations among local feature vectors at spatial positions in CNN feature maps. In this paper, we propose an effective interaction-aware self-attention model which can extract information about the interactions between feature vectors to learn attention maps. Since the different layers in a network capture feature maps at different scales, we introduce a spatial pyramid with the feature maps at different layers for attention modeling. The multi-scale information is utilized to obtain more accurate attention scores. These attention scores are used to weight the local feature vectors of the feature maps and then calculate attentional feature maps. Since the number of feature maps input to the spatial pyramid attention layer is unrestricted, we easily extend this attention layer to a spatio-temporal version. Our model can be embedded in any general CNN to form a video-level end-to-end attention network for action recognition. Several methods are investigated to combine the RGB and flow streams to obtain accurate predictions of human actions. Experimental results show that our method achieves state-of-the-art results on the datasets UCF101, HMDB51, Kinetics-400, and untrimmed Charades 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Haowei  |e verfasserin  |4 aut 
700 1 |a Du, Yang  |e verfasserin  |4 aut 
700 1 |a Yuan, Chunfeng  |e verfasserin  |4 aut 
700 1 |a Li, Bing  |e verfasserin  |4 aut 
700 1 |a Maybank, Stephen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 01. Okt., Seite 7010-7028  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:01  |g month:10  |g pages:7010-7028 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3100277  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 01  |c 10  |h 7010-7028