|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM328562793 |
003 |
DE-627 |
005 |
20231225203210.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15778
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1095.xml
|
035 |
|
|
|a (DE-627)NLM328562793
|
035 |
|
|
|a (NLM)34311496
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Seabloom, Eric W
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Soil nutrients increase long-term soil carbon gains threefold on retired farmland
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.09.2021
|
500 |
|
|
|a Date Revised 20.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 John Wiley & Sons Ltd.
|
520 |
|
|
|a Abandoned agricultural lands often accumulate soil carbon (C) following depletion of soil C by cultivation. The potential for this recovery to provide significant C storage benefits depends on the rate of soil C accumulation, which, in turn, may depend on nutrient supply rates. We tracked soil C for almost four decades following intensive agricultural soil disturbance along an experimentally imposed gradient in nitrogen (N) added annually in combination with other macro- and micro-nutrients. Soil %C accumulated over the course of the study in unfertilized control plots leading to a gain of 6.1 Mg C ha-1 in the top 20 cm of soil. Nutrient addition increased soil %C accumulation leading to a gain of 17.8 Mg C ha-1 in fertilized plots, nearly a threefold increase over the control plots. These results demonstrate that substantial increases in soil C in successional grasslands following agricultural abandonment occur over decadal timescales, and that C gain is increased by high supply rates of soil nutrients. In addition, soil %C continued to increase for decades under elevated nutrient supply, suggesting that short-term nutrient addition experiments underestimate the effects of soil nutrients on soil C accumulation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a LTER
|
650 |
|
4 |
|a disturbance
|
650 |
|
4 |
|a ecosystem ecology
|
650 |
|
4 |
|a global change
|
650 |
|
4 |
|a grasslands
|
650 |
|
4 |
|a recovery
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Borer, Elizabeth T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hobbie, Sarah E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a MacDougall, Andrew S
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 27(2021), 19 vom: 01. Okt., Seite 4909-4920
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2021
|g number:19
|g day:01
|g month:10
|g pages:4909-4920
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15778
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2021
|e 19
|b 01
|c 10
|h 4909-4920
|