No-Reference Quality Assessment for Screen Content Images Using Visual Edge Model and AdaBoosting Neural Network

In this paper, a competitive no-reference metric is proposed to assess the perceptive quality of screen content images (SCIs), which uses the human visual edge model and AdaBoosting neural network. Inspired by the existing theory that the edge information which reflects the visual quality of SCI is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 26., Seite 6801-6814
1. Verfasser: Yang, Jiachen (VerfasserIn)
Weitere Verfasser: Bian, Zilin, Liu, Jiacheng, Jiang, Bin, Lu, Wen, Gao, Xinbo, Song, Houbing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM328551031
003 DE-627
005 20231225203155.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3098245  |2 doi 
028 5 2 |a pubmed24n1095.xml 
035 |a (DE-627)NLM328551031 
035 |a (NLM)34310304 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jiachen  |e verfasserin  |4 aut 
245 1 0 |a No-Reference Quality Assessment for Screen Content Images Using Visual Edge Model and AdaBoosting Neural Network 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.08.2021 
500 |a Date Revised 02.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a competitive no-reference metric is proposed to assess the perceptive quality of screen content images (SCIs), which uses the human visual edge model and AdaBoosting neural network. Inspired by the existing theory that the edge information which reflects the visual quality of SCI is effectively captured by the human visual difference of the Gaussian (DOG) model, we compute two types of multi-scale edge maps via the DOG operator firstly. Specifically, two types of edge maps contain contour and edge information respectively. Then after locally normalizing edge maps, L -moments distribution estimation is utilized to fit their DOG coefficients, and the fitted L -moments parameters can be regarded as edge features. Finally, to obtain the final perceptive quality score, we use an AdaBoosting back-propagation neural network (ABPNN) to map the quality-aware features to the perceptual quality score of SCIs. The reason why the ABPNN is regarded as the appropriate approach for the visual quality assessment of SCIs is that we abandon the regression network with a shallow structure, try a regression network with a deep architecture, and achieve a good generalization ability. The proposed method delivers highly competitive performance and shows high consistency with the human visual system (HVS) on the public SCI-oriented databases 
650 4 |a Journal Article 
700 1 |a Bian, Zilin  |e verfasserin  |4 aut 
700 1 |a Liu, Jiacheng  |e verfasserin  |4 aut 
700 1 |a Jiang, Bin  |e verfasserin  |4 aut 
700 1 |a Lu, Wen  |e verfasserin  |4 aut 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
700 1 |a Song, Houbing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 26., Seite 6801-6814  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:26  |g pages:6801-6814 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3098245  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 26  |h 6801-6814