Joint Learning of Latent Similarity and Local Embedding for Multi-View Clustering

Spectral clustering has been an attractive topic in the field of computer vision due to the extensive growth of applications, such as image segmentation, clustering and representation. In this problem, the construction of the similarity matrix is a vital element affecting clustering performance. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 26., Seite 6772-6784
1. Verfasser: Huang, Aiping (VerfasserIn)
Weitere Verfasser: Chen, Weiling, Zhao, Tiesong, Chen, Chang Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32855099X
003 DE-627
005 20231225203155.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3096086  |2 doi 
028 5 2 |a pubmed24n1095.xml 
035 |a (DE-627)NLM32855099X 
035 |a (NLM)34310300 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Aiping  |e verfasserin  |4 aut 
245 1 0 |a Joint Learning of Latent Similarity and Local Embedding for Multi-View Clustering 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Spectral clustering has been an attractive topic in the field of computer vision due to the extensive growth of applications, such as image segmentation, clustering and representation. In this problem, the construction of the similarity matrix is a vital element affecting clustering performance. In this paper, we propose a multi-view joint learning (MVJL) framework to achieve both a reliable similarity matrix and a latent low-dimensional embedding. Specifically, the similarity matrix to be learned is represented as a convex hull of similarity matrices from different views, where the nuclear norm is imposed to capture the principal information of multiple views and improve robustness against noise/outliers. Moreover, an effective low-dimensional representation is obtained by applying local embedding on the similarity matrix, which preserves the local intrinsic structure of data through dimensionality reduction. With these techniques, we formulate the MVJL as a joint optimization problem and derive its mathematical solution with the alternating direction method of multipliers strategy and the proximal gradient descent method. The solution, which consists of a similarity matrix and a low-dimensional representation, is ultimately integrated with spectral clustering or K-means for multi-view clustering. Extensive experimental results on real-world datasets demonstrate that MVJL achieves superior clustering performance over other state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Chen, Weiling  |e verfasserin  |4 aut 
700 1 |a Zhao, Tiesong  |e verfasserin  |4 aut 
700 1 |a Chen, Chang Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 26., Seite 6772-6784  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:26  |g pages:6772-6784 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3096086  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 26  |h 6772-6784