Random Features for Kernel Approximation : A Survey on Algorithms, Theory, and Beyond
The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hen...
| Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 26. Okt., Seite 7128-7148 |
|---|---|
| Auteur principal: | |
| Autres auteurs: | , , |
| Format: | Article en ligne |
| Langue: | English |
| Publié: |
2022
|
| Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
| Sujets: | Journal Article |
| Accès en ligne |
Volltext |