Random Features for Kernel Approximation : A Survey on Algorithms, Theory, and Beyond

The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hen...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 26. Okt., Seite 7128-7148
Auteur principal: Liu, Fanghui (Auteur)
Autres auteurs: Huang, Xiaolin, Chen, Yudong, Suykens, Johan A K
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article