Response to Comment on "Eppur si Muove : Proton Diffusion in Halide Perovskite Single Crystals": Measure What is Measurable, and Make Measurable What is Not So: Discrepancies between Proton Diffusion in Halide Perovskite Single Crystals and Thin Films

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 35 vom: 15. Sept., Seite e2102822
1. Verfasser: Ceratti, Davide Raffaele (VerfasserIn)
Weitere Verfasser: Zohar, Arava, Hodes, Gary, Cahen, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Letter deuteration halide perovskites ion diffusion proton diffusion
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
Buffeteau et al. note that the proton diffusion coefficient in MAPbI3 that is deduced (by the authors) from results, obtained by a suite of complementary techniques, on a large number of single crystals (Adv. Mater. 2020, 32, 2002467) is 5 orders of magnitude higher than what is estimated (by them) in J. Am. Chem. Soc. 2020, 142, 10431, from infrared spectroscopy on ultrathin MAPbI3 films; use of (deuterium/hydrogen) D/H isotope substitution is common to both studies. Buffeteau et al. speculated that proton diffusion in halide perovskite single crystals is dominated by 1D defects, which will somehow not be present in thin films, as those are made up of small-sized crystallites. It is shown here that the idea of a 1D defect is not supported by the body of experimental data gathered on these crystals, that the statistical analysis employed in to Buffeteau et al. to support the criticism is problematic, and it is concluded that the source of the difference must lie elsewhere. Constructive suggestions for this difference are provided and experiments to discern between possible reasons for it are proposed
Beschreibung:Date Revised 02.09.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202102822