News recommender system : a review of recent progress, challenges, and opportunities

© Crown 2021.

Détails bibliographiques
Publié dans:Artificial intelligence review. - 1998. - 55(2022), 1 vom: 17., Seite 749-800
Auteur principal: Raza, Shaina (Auteur)
Autres auteurs: Ding, Chen
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Artificial intelligence review
Sujets:News Beyond-accuracy Datasets Deep learning Evaluation measures Recommender system User behavior
LEADER 01000caa a22002652c 4500
001 NLM328500712
003 DE-627
005 20250302065707.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-021-10043-x  |2 doi 
028 5 2 |a pubmed25n1094.xml 
035 |a (DE-627)NLM328500712 
035 |a (NLM)34305252 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Raza, Shaina  |e verfasserin  |4 aut 
245 1 0 |a News recommender system  |b a review of recent progress, challenges, and opportunities 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.02.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Crown 2021. 
520 |a Nowadays, more and more news readers read news online where they have access to millions of news articles from multiple sources. In order to help users find the right and relevant content, news recommender systems (NRS) are developed to relieve the information overload problem and suggest news items that might be of interest for the news readers. In this paper, we highlight the major challenges faced by the NRS and identify the possible solutions from the state-of-the-art. Our discussion is divided into two parts. In the first part, we present an overview of the recommendation solutions, datasets, evaluation criteria beyond accuracy and recommendation platforms being used in the NRS. We also talk about two popular classes of models that have been successfully used in recent years. In the second part, we focus on the deep neural networks as solutions to build the NRS. Different from previous surveys, we study the effects of news recommendations on user behaviors and try to suggest possible remedies to mitigate those effects. By providing the state-of-the-art knowledge, this survey can help researchers and professional practitioners have a better understanding of the recent developments in news recommendation algorithms. In addition, this survey sheds light on the potential new directions 
650 4 |a News 
650 4 |a Beyond-accuracy 
650 4 |a Datasets 
650 4 |a Deep learning 
650 4 |a Evaluation measures 
650 4 |a News 
650 4 |a Recommender system 
650 4 |a User behavior 
700 1 |a Ding, Chen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 55(2022), 1 vom: 17., Seite 749-800  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnas 
773 1 8 |g volume:55  |g year:2022  |g number:1  |g day:17  |g pages:749-800 
856 4 0 |u http://dx.doi.org/10.1007/s10462-021-10043-x  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 55  |j 2022  |e 1  |b 17  |h 749-800