Interfacial Embedding of Laser-Manufactured Fluorinated Gold Clusters Enabling Stable Perovskite Solar Cells with Efficiency Over 24

© 2021 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 36 vom: 10. Sept., Seite e2101590
Auteur principal: Guo, Pengfei (Auteur)
Autres auteurs: Zhu, Hongfu, Zhao, Wenhao, Liu, Chen, Zhu, Liguo, Ye, Qian, Jia, Ning, Wang, Hongyue, Zhang, Xiuhai, Huang, Wanxia, Vinokurov, Vladimir A, Ivanov, Evgenii, Shchukin, Dmitry, Harvey, Daniel, Ulloa, Jose María, Hierro, Adrian, Wang, Hongqiang
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article environmental stability gold clusters interfacial loss perovskite solar cells pulsed laser irradiation
Description
Résumé:© 2021 Wiley-VCH GmbH.
Tackling the interfacial loss in emerged perovskite-based solar cells (PSCs) to address synchronously the carrier dynamics and the environmental stability, has been of fundamental and viable importance, while technological hurdles remain in not only creating such interfacial mediator, but the subsequent interfacial embedding in the active layer. This article reports a strategy of interfacial embedding of hydrophobic fluorinated-gold-clusters (FGCs) for highly efficient and stable PSCs. The p-type semiconducting feature enables the FGC efficient interfacial mediator to improve the carrier dynamics by reducing the interfacial carrier transfer barrier and boosting the charge extraction at grain boundaries. The hydrophobic tails of the gold clusters and the hydrogen bonding between fluorine groups and perovskite favor the enhancement of environmental stability. Benefiting from these merits, highly efficient formamidinium lead iodide PSCs (champion efficiency up to 24.02%) with enhanced phase stability under varied relative humidity (RH) from 40% to 95%, as well as highly efficient mixed-cation PSCs with moisture stability (RH of 75%) over 10 000 h are achieved. It is thus inspiring to advance the development of highly efficient and stable PSCs via interfacial embedding laser-generated additives for improved charge transfer/extraction and environmental stability
Description:Date Revised 10.09.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202101590