|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM328472344 |
003 |
DE-627 |
005 |
20231225203006.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202103248
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1094.xml
|
035 |
|
|
|a (DE-627)NLM328472344
|
035 |
|
|
|a (NLM)34302400
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Zhenhua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Titania-Supported Ni2 P/Ni Catalysts for Selective Solar-Driven CO Hydrogenation
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Solar-driven Fischer-Tropsch synthesis (FTS) holds great potential for the sustainable production of fuels from syngas and solar energy. However, the selectivity toward multi-carbon products (C2+ ) is often hampered by the difficulty in the regulation of transition metals acting as both light absorption units and active sites. Herein, a partial phosphidation strategy to prepare titania supported Ni2 P/Ni catalysts for photothermal FTS is demonstrated. Under Xenon lamp or concentrated sunlight irradiation, the optimized catalyst shows a C2+ selectivity of 70% at a CO conversion of >20%. Conversely, nickel metal in the absence of Ni2 P delivers negligible C2+ products (≈1%) with methane being the major product (>90%). Structural characterization and density functional theory calculation reveal that the partial phosphidation allows exposed metallic Ni to be active for CO adsorption and activation, while the existence of Ni2 P/Ni interface is responsible to inhibit CO methanation and promote C-C coupling of adsorbed *CH intermediates. This work introduces a novel phosphidation strategy for nickel-based photothermal catalysts in efficiently harnessing solar energy, and regulating the reaction pathways for CO hydrogenation to deliver high value products
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a phosphidation
|
650 |
|
4 |
|a photothermal catalysis
|
650 |
|
4 |
|a solar-driven
|
650 |
|
4 |
|a value-added hydrocarbons
|
700 |
1 |
|
|a Zhang, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jinjia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Run
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Waterhouse, Geoffrey I N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wen, Xiao-Dong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Tierui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 36 vom: 10. Sept., Seite e2103248
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:36
|g day:10
|g month:09
|g pages:e2103248
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202103248
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 36
|b 10
|c 09
|h e2103248
|