Triarylamine-Pyridine-Carbonitriles for Organic Light-Emitting Devices with EQE Nearly 40
© 2021 Wiley-VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 35 vom: 01. Sept., Seite e2008032 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2021
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article external quantum efficiency of nearly 40% molecular orientation operational stability organic light-emitting diodes pyridine-carbonitrile thermally activated delayed fluorescence triphenylamine |
| Zusammenfassung: | © 2021 Wiley-VCH GmbH. Highly efficient thermally activated delayed fluorescence (TADF) molecules are in urgent demand for solid-state lighting and full-color displays. Here, the design and synthesis of three triarylamine-pyridine-carbonitrile-based TADF compounds, TPAPPC, TPAmPPC, and tTPAmPPC, are shown. They exhibit excellent photoluminescence quantum yields of 79-100% with small ΔEST values, fast reverse intersystem crossing (RISC), and high horizontal dipole ratios (Θ// = 86-88%) in the thin films leading to the enhancement of device light outcoupling. Consequently, a green organic light-emitting diode (OLED) based on TPAmPPC shows a high average external quantum efficiency of 38.8 ± 0.6%, a current efficiency of 130.1 ± 2.1 cd A-1 , and a power efficiency of 136.3 ± 2.2 lm W-1 . The highest device efficiency of 39.8% appears to be record-breaking among TADF-based OLEDs to date. In addition, the TPAmPPC-based device shows superior operation lifetime and high-temperature resistance. It is worth noting that the TPA-PPC-based materials have excellent optical properties and the potential for making them strong candidates for TADF practical application |
|---|---|
| Beschreibung: | Date Revised 02.09.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202008032 |