Herbivory-induced systemic signals are likely to be evolutionarily conserved in euphyllophytes

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 20 vom: 26. Okt., Seite 7274-7284
1. Verfasser: Lei, Yunting (VerfasserIn)
Weitere Verfasser: Xu, Yuxing, Zhang, Jingxiong, Song, Juan, Wu, Jianqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Dodder evolution herbivory jasmonic acid systemic signaling vascular plants Cyclopentanes Oxylipins
Beschreibung
Zusammenfassung:© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Herbivory-induced systemic signaling has been demonstrated in monocots and dicots, and is essential for plant defense against insects. However, the nature and evolution of herbivory-induced systemic signals remain unclear. Grafting is widely used for studying systemic signaling; however, grafting between dicot plants from different families is difficult, and grafting is impossible for monocots. In this study, we took advantage of dodder's extraordinary capability of parasitizing various plant species. Field dodder (Cuscuta campestris) was employed to connect pairs of species that are phylogenetically very distant, ranging from fern to monocot and dicot plants, and so determine whether interplant signaling occurs after simulated herbivory. It was found that simulated herbivory-induced systemic signals can be transferred by dodder between a monocot and a dicot plant and even between a fern and a dicot plant, and the plants that received the systemic signals all exhibited elevated defenses. Thus, we inferred that the herbivory-induced systemic signals are likely to be evolutionarily well conserved among vascular plants. Importantly, we also demonstrate that the jasmonate pathway is probably an ancient regulator of the biosynthesis and/or transport of systemic signals in vascular plants. These findings provide new insight into the nature and evolution of systemic signaling
Beschreibung:Date Completed 24.11.2021
Date Revised 24.11.2021
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erab349