Extraction of Au(III) by Microbially Reduced Metal-Organic Frameworks

Gold is a critical resource in the jewelry and electronics industries and is facing increased consumer demand. Accordingly, methods for its extraction from waste effluents and environmental water sources have been sought to supplement existing mining infrastructure. Redox-mediated treatments, such a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 37(2021), 30 vom: 03. Aug., Seite 9078-9088
1. Verfasser: Springthorpe, Sarah K (VerfasserIn)
Weitere Verfasser: Keitz, Benjamin K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Ferric Compounds Metal-Organic Frameworks
Beschreibung
Zusammenfassung:Gold is a critical resource in the jewelry and electronics industries and is facing increased consumer demand. Accordingly, methods for its extraction from waste effluents and environmental water sources have been sought to supplement existing mining infrastructure. Redox-mediated treatments, such as Fe(II)-based platforms, offer promise for precipitating soluble Au(III). We hypothesized that microbial generation of Fe(II) in the presence of sorbent metal-organic frameworks could capitalize on the advantages of both biological- and chemical-driven extraction approaches. Toward this aim, we tested Au(III) removal by Shewanella oneidensis cultured with Fe(III)-based materials (ferrihydrite, Fe-BTC, MIL-100, or MIL-127). Across all tested materials, S. oneidensis generated the highest levels of redox-active Fe(II) (1.99 ± 0.27 mM) when cultured with MIL-127 as a respiratory substrate in a bicarbonate-buffered medium. This translated into superior Au(III) removal performance in terms of both removal rate and capacity (k = 2.55 ± 0.60 h-1; Q = 183 mg g-1). Unlike other materials tested, MIL-127 also maintained cell viability following repeated Au(III) challenges, enabling the regeneration of Fe(II) in the framework. Together, these effects facilitated the treatment of multiple cycles of Au(III) by S. oneidensis-reduced MIL-127. Overall, this work demonstrates that microbial generation of Fe(II) can facilitate the removal of Au(III), augmenting purely adsorptive platforms. Given the biological and chemical modularity of our system, our results suggest that future optimizations to microbial Fe(II) generation may offer promise for improving Au(III) extraction processes
Beschreibung:Date Completed 09.08.2021
Date Revised 05.08.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01180