A Visual Analytics Approach for Structural Differences Among Graphs via Deep Learning

Representing and analyzing structural differences among graphs help gain insight into the difference related patterns such as dynamic evolutions of graphs. Conventional solutions leverage representation learning techniques to encode structural information, but lack an intuitive way of studying struc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1991. - 41(2021), 5 vom: 19. Sept., Seite 18-31
1. Verfasser: Han, Dongming (VerfasserIn)
Weitere Verfasser: Pan, Jiacheng, Xie, Cong, Zhao, Xiaodong, Luo, Xiaonan, Chen, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM328253979
003 DE-627
005 20231225202551.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/MCG.2021.3097799  |2 doi 
028 5 2 |a pubmed24n1094.xml 
035 |a (DE-627)NLM328253979 
035 |a (NLM)34280092 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Dongming  |e verfasserin  |4 aut 
245 1 2 |a A Visual Analytics Approach for Structural Differences Among Graphs via Deep Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2021 
500 |a Date Revised 27.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Representing and analyzing structural differences among graphs help gain insight into the difference related patterns such as dynamic evolutions of graphs. Conventional solutions leverage representation learning techniques to encode structural information, but lack an intuitive way of studying structural semantics of graphs. In this article, we propose a representation-and-analysis scheme for structural differences among graphs. We propose a deep-learning-based embedding technique to encode multiple graphs while preserving semantics of structural differences. We design and implement a web-based visual analytics system to support comparative study of features learned from the embeddings. One distinctive feature of our approach is that it supports semantics-aware construction, quantification, and investigation of latent relations encoded in graphs. We validate the usability and effectiveness of our approach through case studies with three datasets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pan, Jiacheng  |e verfasserin  |4 aut 
700 1 |a Xie, Cong  |e verfasserin  |4 aut 
700 1 |a Zhao, Xiaodong  |e verfasserin  |4 aut 
700 1 |a Luo, Xiaonan  |e verfasserin  |4 aut 
700 1 |a Chen, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE computer graphics and applications  |d 1991  |g 41(2021), 5 vom: 19. Sept., Seite 18-31  |w (DE-627)NLM098172794  |x 1558-1756  |7 nnns 
773 1 8 |g volume:41  |g year:2021  |g number:5  |g day:19  |g month:09  |g pages:18-31 
856 4 0 |u http://dx.doi.org/10.1109/MCG.2021.3097799  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2021  |e 5  |b 19  |c 09  |h 18-31