Competition-Enhanced Ligand Selection to Screen for DNA Aptamers for Spherical Gold Nanoparticles

The Competition-Enhanced Ligand Selection (CompELS) approach was used to identify aptamer candidates for spherical gold nanoparticles (AuNPs). This approach differs from conventional Systematic Evolution of Ligands by EXponential enrichment (SELEX)-based aptamer screening by eliminating repeated elu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 30 vom: 03. Aug., Seite 9043-9052
1. Verfasser: Tapp, Maeling (VerfasserIn)
Weitere Verfasser: Dennis, Patrick, Naik, Rajesh R, Milam, Valeria T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Aptamers, Nucleotide Ligands Gold 7440-57-5
Beschreibung
Zusammenfassung:The Competition-Enhanced Ligand Selection (CompELS) approach was used to identify aptamer candidates for spherical gold nanoparticles (AuNPs). This approach differs from conventional Systematic Evolution of Ligands by EXponential enrichment (SELEX)-based aptamer screening by eliminating repeated elution and polymerase chain reaction (PCR) amplification steps of bound candidate sequences between each selection round to continually enrich the candidate aptamer pool with oligonucleotides remaining from an earlier SELEX selection round. Instead, a new pool of unenriched oligonucleotides is added during each CompELS selection round to compete with existing target-bound oligonucleotides species for target binding sites. In this study, 24 aptamer candidates for AuNPs were identified using the CompELS approach and then compared to reveal similarities in their primary structures and their predicted secondary structures. No strong patterns in individual base identities (position-dependent) nor in segments of consecutive bases (independent of position) prevailed among the identified sequences. Motifs in predicted secondary structures, on the other hand, were shared among otherwise unrelated aptamer sequences. These motifs were revealed using a systematic classification and enumeration of distinct secondary structure elements, namely, hairpins, duplexes, single-stranded segments, interior loops, bulges, and multibranched loops
Beschreibung:Date Completed 09.08.2021
Date Revised 09.08.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c01053