Machine Learning to Predict Quasicrystals from Chemical Compositions

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 36 vom: 24. Sept., Seite e2102507
1. Verfasser: Liu, Chang (VerfasserIn)
Weitere Verfasser: Fujita, Erina, Katsura, Yukari, Inada, Yuki, Ishikawa, Asuka, Tamura, Ryuji, Kimura, Kaoru, Yoshida, Ryo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article approximant crystals high-throughput screening machine learning materials informatics quasicrystals
LEADER 01000caa a22002652 4500
001 NLM328239852
003 DE-627
005 20241013231819.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202102507  |2 doi 
028 5 2 |a pubmed24n1566.xml 
035 |a (DE-627)NLM328239852 
035 |a (NLM)34278631 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Chang  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning to Predict Quasicrystals from Chemical Compositions 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Quasicrystals have emerged as the third class of solid-state materials, distinguished from periodic crystals and amorphous solids, which have long-range order without periodicity exhibiting rotational symmetries that are disallowed for periodic crystals in most cases. To date, more than one hundred stable quasicrystals have been reported, leading to the discovery of many new and exciting phenomena. However, the pace of the discovery of new quasicrystals has lowered in recent years, largely owing to the lack of clear guiding principles for the synthesis of new quasicrystals. Here, it is shown that the discovery of new quasicrystals can be accelerated with a simple machine-learning workflow. With a list of the chemical compositions of known stable quasicrystals, approximant crystals, and ordinary crystals, a prediction model is trained to solve the three-class classification task and its predictability compared to the observed phase diagrams of ternary aluminum systems is evaluated. The validation experiments strongly support the superior predictive power of machine learning, with the overall prediction accuracy of the phase prediction task reaching ≈0.728. Furthermore, analyzing the input-output relationships black-boxed into the model, nontrivial empirical equations interpretable by humans that describe conditions necessary for stable quasicrystal formation are identified 
650 4 |a Journal Article 
650 4 |a approximant crystals 
650 4 |a high-throughput screening 
650 4 |a machine learning 
650 4 |a materials informatics 
650 4 |a quasicrystals 
700 1 |a Fujita, Erina  |e verfasserin  |4 aut 
700 1 |a Katsura, Yukari  |e verfasserin  |4 aut 
700 1 |a Inada, Yuki  |e verfasserin  |4 aut 
700 1 |a Ishikawa, Asuka  |e verfasserin  |4 aut 
700 1 |a Tamura, Ryuji  |e verfasserin  |4 aut 
700 1 |a Kimura, Kaoru  |e verfasserin  |4 aut 
700 1 |a Yoshida, Ryo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 36 vom: 24. Sept., Seite e2102507  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:36  |g day:24  |g month:09  |g pages:e2102507 
856 4 0 |u http://dx.doi.org/10.1002/adma.202102507  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 36  |b 24  |c 09  |h e2102507