|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM328239690 |
003 |
DE-627 |
005 |
20241013231819.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202008432
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1566.xml
|
035 |
|
|
|a (DE-627)NLM328239690
|
035 |
|
|
|a (NLM)34278614
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bulmer, John S
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Meta-Analysis of Conductive and Strong Carbon Nanotube Materials
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 13.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a A study of 1304 data points collated over 266 papers statistically evaluates the relationships between carbon nanotube (CNT) material characteristics, including: electrical, mechanical, and thermal properties; ampacity; density; purity; microstructure alignment; molecular dimensions and graphitic perfection; and doping. Compared to conductive polymers and graphitic intercalation compounds, which have exceeded the electrical conductivity of copper, CNT materials are currently one-sixth of copper's conductivity, mechanically on-par with synthetic or carbon fibers, and exceed all the other materials in terms of a multifunctional metric. Doped, aligned few-wall CNTs (FWCNTs) are the most superior CNT category; from this, the acid-spun fiber subset are the most conductive, and the subset of fibers directly spun from floating catalyst chemical vapor deposition are strongest on a weight basis. The thermal conductivity of multiwall CNT material rivals that of FWCNT materials. Ampacity follows a diameter-dependent power-law from nanometer to millimeter scales. Undoped, aligned FWCNT material reaches the intrinsic conductivity of CNT bundles and single-crystal graphite, illustrating an intrinsic limit requiring doping for copper-level conductivities. Comparing an assembly of CNTs (forming mesoscopic bundles, then macroscopic material) to an assembly of graphene (forming single-crystal graphite crystallites, then carbon fiber), the ≈1 µm room-temperature, phonon-limited mean-free-path shared between graphene, metallic CNTs, and activated semiconducting CNTs is highlighted, deemphasizing all metallic helicities for CNT power transmission applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a carbon nanotubes
|
650 |
|
4 |
|a conductive polymers
|
650 |
|
4 |
|a graphitic intercalation compounds
|
650 |
|
4 |
|a meta-analysis
|
700 |
1 |
|
|a Kaniyoor, Adarsh
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Elliott, James A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 36 vom: 24. Sept., Seite e2008432
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:36
|g day:24
|g month:09
|g pages:e2008432
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202008432
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 36
|b 24
|c 09
|h e2008432
|