Semi-Supervised Image Deraining Using Gaussian Processes

Recent CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality. However, these methods are limited in the sense that they can be trained only on fully labeled data. Due to various challenges in obtaining real world fully-la...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 16., Seite 6570-6582
1. Verfasser: Yasarla, Rajeev (VerfasserIn)
Weitere Verfasser: Sindagi, Vishwanath A, Patel, Vishal M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32815878X
003 DE-627
005 20231225202345.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3096323  |2 doi 
028 5 2 |a pubmed24n1093.xml 
035 |a (DE-627)NLM32815878X 
035 |a (NLM)34270423 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yasarla, Rajeev  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised Image Deraining Using Gaussian Processes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality. However, these methods are limited in the sense that they can be trained only on fully labeled data. Due to various challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data and hence, generalize poorly to real-world images. The use of real-world data in training image deraining networks is relatively less explored in the literature. We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset while generalizing better using unlabeled real-world images. More specifically, we model the latent space vectors of unlabeled data using Gaussian Processes, which is then used to compute pseudo-ground-truth for supervising the network on unlabeled data. The pseudo ground-truth is further used to supervise the network at the intermediate level for the unlabeled data. Through extensive experiments and ablations on several challenging datasets (such as Rain800, Rain200L and DDN-SIRR), we show that the proposed method is able to effectively leverage unlabeled data thereby resulting in significantly better performance as compared to labeled-only training. Additionally, we demonstrate that using unlabeled real-world images in the proposed GP-based framework results in superior performance as compared to the existing methods. Code is available at: https://github.com/rajeevyasarla/Syn2Real 
650 4 |a Journal Article 
700 1 |a Sindagi, Vishwanath A  |e verfasserin  |4 aut 
700 1 |a Patel, Vishal M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 16., Seite 6570-6582  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:16  |g pages:6570-6582 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3096323  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 16  |h 6570-6582