Fast Manifold Ranking With Local Bipartite Graph

During the past decades, manifold ranking has been widely applied to content-based image retrieval and shown excellent performance. However, manifold ranking is computationally expensive in both graph construction and ranking learning. Much effort has been devoted to improve its performance by intro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 6744-6756
1. Verfasser: Chen, Xiaojun (VerfasserIn)
Weitere Verfasser: Ye, Yuzhong, Wu, Qingyao, Nie, Feiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32810325X
003 DE-627
005 20231225202235.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3096082  |2 doi 
028 5 2 |a pubmed24n1093.xml 
035 |a (DE-627)NLM32810325X 
035 |a (NLM)34264827 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xiaojun  |e verfasserin  |4 aut 
245 1 0 |a Fast Manifold Ranking With Local Bipartite Graph 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a During the past decades, manifold ranking has been widely applied to content-based image retrieval and shown excellent performance. However, manifold ranking is computationally expensive in both graph construction and ranking learning. Much effort has been devoted to improve its performance by introducing approximating techniques. In this paper, we propose a fast manifold ranking method, namely Local Bipartite Manifold Ranking (LBMR). Given a set of images, we first extract multiple regions from each image to form a large image descriptor matrix, and then use the anchor-based strategy to construct a local bipartite graph in which a regional k -means (RKM) is proposed to obtain high quality anchors. We propose an iterative method to directly solve the manifold ranking problem from the local bipartite graph, which monotonically decreases the objective function value in each iteration until the algorithm converges. Experimental results on several real-world image datasets demonstrate the effectiveness and efficiency of our proposed method 
650 4 |a Journal Article 
700 1 |a Ye, Yuzhong  |e verfasserin  |4 aut 
700 1 |a Wu, Qingyao  |e verfasserin  |4 aut 
700 1 |a Nie, Feiping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 15., Seite 6744-6756  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:15  |g pages:6744-6756 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3096082  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 15  |h 6744-6756