Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 20 vom: 07. Okt., Seite 5141-5153
1. Verfasser: Anthony, Tyler L (VerfasserIn)
Weitere Verfasser: Silver, Whendee L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article agricultural peatlands drained peatlands greenhouse gas flux hot moments methane nitrous oxide Greenhouse Gases Soil Carbon Dioxide mehr... 142M471B3J Nitrous Oxide K50XQU1029 Methane OP0UW79H66
Beschreibung
Zusammenfassung:© 2021 John Wiley & Sons Ltd.
Agricultural peatlands are estimated to emit approximately one third of global greenhouse gas (GHG) emissions from croplands, but the temporal dynamics and controls of these emissions are poorly understood, particularly for nitrous oxide (N2 O). We used cavity ring-down spectroscopy and automated chambers in a drained agricultural peatland to measure over 70,000 individual N2 O, methane (CH4 ), and carbon dioxide (CO2 ) fluxes over 3 years. Our results showed that N2 O fluxes were high, contributing 26% (annual range: 16%-35%) of annual CO2 e emissions. Total N2 O fluxes averaged 26 ± 0.5 kg N2 O-N ha-1 y-1 and exhibited significant inter- and intra-annual variability with a maximum annual flux of 42 ± 1.8 kg N2 O-N ha-1 y-1 . Hot moments of N2 O and CH4 emissions represented 1.1 ± 0.2 and 1.3 ± 0.2% of measurements, respectively, but contributed to 45 ± 1% of mean annual N2 O fluxes and to 140 ± 9% of mean annual CH4  fluxes. Soil moisture, soil temperature, and bulk soil oxygen (O2 ) concentrations were strongly correlated with soil N2 O and CH4 emissions; soil nitrate ( NO3- ) concentrations were also significantly correlated with soil N2 O emissions. These results suggest that IPCC benchmarks underestimate N2 O emissions from these high emitting agricultural peatlands by up to 70%. Scaling to regional agricultural peatlands with similar management suggests these ecosystems could emit up to 1.86 Tg CO2 e y-1 (range: 1.58-2.21 Tg CO2 e y-1 ). Data suggest that these agricultural peatlands are large sources of GHGs, and that short-term hot moments of N2 O and CH4 are a significant fraction of total greenhouse budgets
Beschreibung:Date Completed 20.10.2021
Date Revised 28.09.2022
published: Print-Electronic
ErratumIn: Glob Chang Biol. 2022 Dec;28(23):7155-7156. - PMID 36169000
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.15802