Path-Restore : Learning Network Path Selection for Image Restoration

Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to res...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 01. Okt., Seite 7078-7092
1. Verfasser: Yu, Ke (VerfasserIn)
Weitere Verfasser: Wang, Xintao, Dong, Chao, Tang, Xiaoou, Loy, Chen Change
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM328013102
003 DE-627
005 20231225202041.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3096255  |2 doi 
028 5 2 |a pubmed24n1093.xml 
035 |a (DE-627)NLM328013102 
035 |a (NLM)34255625 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yu, Ke  |e verfasserin  |4 aut 
245 1 0 |a Path-Restore  |b Learning Network Path Selection for Image Restoration 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Very deep Convolutional Neural Networks (CNNs) have greatly improved the performance on various image restoration tasks. However, this comes at a price of increasing computational burden, hence limiting their practical usages. We observe that some corrupted image regions are inherently easier to restore than others since the distortion and content vary within an image. To leverage this, we propose Path-Restore, a multi-path CNN with a pathfinder that can dynamically select an appropriate route for each image region. We train the pathfinder using reinforcement learning with a difficulty-regulated reward. This reward is related to the performance, complexity and "the difficulty of restoring a region". A policy mask is further investigated to jointly process all the image regions. We conduct experiments on denoising and mixed restoration tasks. The results show that our method achieves comparable or superior performance to existing approaches with less computational cost. In particular, Path-Restore is effective for real-world denoising, where the noise distribution varies across different regions on a single image. Compared to the state-of-the-art RIDNet [1], our method achieves comparable performance and runs 2.7x faster on the realistic Darmstadt Noise Dataset [2]. Models and codes are available on the project page: https://www.mmlab-ntu.com/project/pathrestore/ 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Xintao  |e verfasserin  |4 aut 
700 1 |a Dong, Chao  |e verfasserin  |4 aut 
700 1 |a Tang, Xiaoou  |e verfasserin  |4 aut 
700 1 |a Loy, Chen Change  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 01. Okt., Seite 7078-7092  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:01  |g month:10  |g pages:7078-7092 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3096255  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 01  |c 10  |h 7078-7092