|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM327964707 |
003 |
DE-627 |
005 |
20250302040059.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202101845
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1093.xml
|
035 |
|
|
|a (DE-627)NLM327964707
|
035 |
|
|
|a (NLM)34250646
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Zheng-Jie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Engineering Microdomains of Oxides in High-Entropy Alloy Electrodes toward Efficient Oxygen Evolution
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 17.08.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a One important goal of the current electrocatalysis is to develop integrated electrodes from the atomic level design to multilevel structural engineering in simple ways and low prices. Here, a series of oxygen micro-alloyed high-entropy alloys (O-HEAs) is developed via a metallurgy approach. A (CrFeCoNi)97 O3 bulk O-HEA shows exceptional electrocatalytic performance for the oxygen evolution reaction (OER), reaching an overpotential as low as 196 mV and a Tafel slope of 29 mV dec-1 , and with stability longer than 120 h in 1 m KOH solution at a current density of 10 mA cm-2 . It is shown that the enhanced OER performance can be attributed to the formation of island-like Cr2 O3 microdomains, the leaching of Cr3+ ions, and structural amorphization at the interfaces of the domains. These findings offer a technological-orientated strategy to integrated electrodes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a amorphization
|
650 |
|
4 |
|a integrated oxygen evolution reaction electrodes
|
650 |
|
4 |
|a oxygen micro-alloyed high-entropy alloys
|
700 |
1 |
|
|a Zhang, Tao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Xiao-Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Yong-Jiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Xiao-Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yi-Fan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Xu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Cheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Lin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zeng, Ming-Hua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Hai-Bin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 33 vom: 16. Aug., Seite e2101845
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:33
|g day:16
|g month:08
|g pages:e2101845
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202101845
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 33
|b 16
|c 08
|h e2101845
|