Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 19 vom: 20. Okt., Seite 4615-4629
1. Verfasser: Hrycik, Allison R (VerfasserIn)
Weitere Verfasser: Isles, Peter D F, Adrian, Rita, Albright, Matthew, Bacon, Linda C, Berger, Stella A, Bhattacharya, Ruchi, Grossart, Hans-Peter, Hejzlar, Josef, Hetherington, Amy Lee, Knoll, Lesley B, Laas, Alo, McDonald, Cory P, Merrell, Kellie, Nejstgaard, Jens C, Nelson, Kirsten, Nõges, Peeter, Paterson, Andrew M, Pilla, Rachel M, Robertson, Dale M, Rudstam, Lars G, Rusak, James A, Sadro, Steven, Silow, Eugene A, Stockwell, Jason D, Yao, Huaxia, Yokota, Kiyoko, Pierson, Donald C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article chlorophyll-a climate change long-term data phytoplankton biomass snowmelt stream discharge Chlorophyll 1406-65-1 Chlorophyll A YF5Q9EJC8Y
LEADER 01000naa a22002652 4500
001 NLM327878169
003 DE-627
005 20231225201745.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15797  |2 doi 
028 5 2 |a pubmed24n1092.xml 
035 |a (DE-627)NLM327878169 
035 |a (NLM)34241940 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hrycik, Allison R  |e verfasserin  |4 aut 
245 1 0 |a Earlier winter/spring runoff and snowmelt during warmer winters lead to lower summer chlorophyll-a in north temperate lakes 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.09.2021 
500 |a Date Revised 20.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 John Wiley & Sons Ltd. 
520 |a Winter conditions, such as ice cover and snow accumulation, are changing rapidly at northern latitudes and can have important implications for lake processes. For example, snowmelt in the watershed-a defining feature of lake hydrology because it delivers a large portion of annual nutrient inputs-is becoming earlier. Consequently, earlier and a shorter duration of snowmelt are expected to affect annual phytoplankton biomass. To test this hypothesis, we developed an index of runoff timing based on the date when 50% of cumulative runoff between January 1 and May 31 had occurred. The runoff index was computed using stream discharge for inflows, outflows, or for flows from nearby streams for 41 lakes in Europe and North America. The runoff index was then compared with summer chlorophyll-a (Chl-a) concentration (a proxy for phytoplankton biomass) across 5-53 years for each lake. Earlier runoff generally corresponded to lower summer Chl-a. Furthermore, years with earlier runoff also had lower winter/spring runoff magnitude, more protracted runoff, and earlier ice-out. We examined several lake characteristics that may regulate the strength of the relationship between runoff timing and summer Chl-a concentrations; however, our tested covariates had little effect on the relationship. Date of ice-out was not clearly related to summer Chl-a concentrations. Our results indicate that ongoing changes in winter conditions may have important consequences for summer phytoplankton biomass and production 
650 4 |a Journal Article 
650 4 |a chlorophyll-a 
650 4 |a climate change 
650 4 |a long-term data 
650 4 |a phytoplankton biomass 
650 4 |a snowmelt 
650 4 |a stream discharge 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Chlorophyll A  |2 NLM 
650 7 |a YF5Q9EJC8Y  |2 NLM 
700 1 |a Isles, Peter D F  |e verfasserin  |4 aut 
700 1 |a Adrian, Rita  |e verfasserin  |4 aut 
700 1 |a Albright, Matthew  |e verfasserin  |4 aut 
700 1 |a Bacon, Linda C  |e verfasserin  |4 aut 
700 1 |a Berger, Stella A  |e verfasserin  |4 aut 
700 1 |a Bhattacharya, Ruchi  |e verfasserin  |4 aut 
700 1 |a Grossart, Hans-Peter  |e verfasserin  |4 aut 
700 1 |a Hejzlar, Josef  |e verfasserin  |4 aut 
700 1 |a Hetherington, Amy Lee  |e verfasserin  |4 aut 
700 1 |a Knoll, Lesley B  |e verfasserin  |4 aut 
700 1 |a Laas, Alo  |e verfasserin  |4 aut 
700 1 |a McDonald, Cory P  |e verfasserin  |4 aut 
700 1 |a Merrell, Kellie  |e verfasserin  |4 aut 
700 1 |a Nejstgaard, Jens C  |e verfasserin  |4 aut 
700 1 |a Nelson, Kirsten  |e verfasserin  |4 aut 
700 1 |a Nõges, Peeter  |e verfasserin  |4 aut 
700 1 |a Paterson, Andrew M  |e verfasserin  |4 aut 
700 1 |a Pilla, Rachel M  |e verfasserin  |4 aut 
700 1 |a Robertson, Dale M  |e verfasserin  |4 aut 
700 1 |a Rudstam, Lars G  |e verfasserin  |4 aut 
700 1 |a Rusak, James A  |e verfasserin  |4 aut 
700 1 |a Sadro, Steven  |e verfasserin  |4 aut 
700 1 |a Silow, Eugene A  |e verfasserin  |4 aut 
700 1 |a Stockwell, Jason D  |e verfasserin  |4 aut 
700 1 |a Yao, Huaxia  |e verfasserin  |4 aut 
700 1 |a Yokota, Kiyoko  |e verfasserin  |4 aut 
700 1 |a Pierson, Donald C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 19 vom: 20. Okt., Seite 4615-4629  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:19  |g day:20  |g month:10  |g pages:4615-4629 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15797  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 19  |b 20  |c 10  |h 4615-4629