Can cropland management practices lower net greenhouse emissions without compromising yield?

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 19 vom: 20. Okt., Seite 4657-4670
1. Verfasser: Shang, Ziyin (VerfasserIn)
Weitere Verfasser: Abdalla, Mohamed, Xia, Longlong, Zhou, Feng, Sun, Wenjuan, Smith, Pete
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Meta-Analysis global warming manure substitution net greenhouse gas balance residue retention water saving zero-tillage Soil Carbon mehr... 7440-44-0 Nitrous Oxide K50XQU1029 Methane OP0UW79H66
Beschreibung
Zusammenfassung:© 2021 John Wiley & Sons Ltd.
Smart cropland management practices can mitigate greenhouse gas (GHG) emissions while safeguarding food security. However, the integrated effects on net greenhouse gas budget (NGHGB) and grain yield from different management practices remain poorly defined and vary with environmental and application conditions. Here, we conducted a global meta-analysis on 347 observation sets of non-CO2 GHG (CH4 and N2 O) emissions and grain yield, and 412 observations of soil organic carbon sequestration rate (SOCSR). Our results show that for paddy rice, replacing synthetic nitrogen at the rate of 30%-59% with organic fertilizer significantly decreased net GHG emissions (NGHGB: -15.3 ± 3.4 [standard error], SOCSR: -15.8 ± 3.8, non-CO2 GHGs: 0.6 ± 0.1 in Mg CO2 eq ha-1  year-1 ) and improved rice yield (0.4 ± 0.1 in Mg ha-1  year-1 ). In contrast, intermittent irrigation significantly increased net GHG emissions by 11.2 ± 3.1 and decreased rice yield by 0.4 ± 0.1. The reduction in SOC sequestration by intermittent irrigation (15.5 ± 3.3), which was most severe (>20) in alkaline soils (pH > 7.5), completely offset the mitigation in CH4 emissions. Straw return for paddy rice also led to a net increase in GHG emissions (NGHGB: 4.8 ± 1.4) in silt-loam soils, where CH4 emissions (6.3 ± 1.3) were greatly stimulated. For upland cropping systems, mostly by enhancing SOC sequestration, straw return (NGHGB: -3.4 ± 0.8, yield: -0.5 ± 0.6) and no-tillage (NGHGB: -2.9 ± 0.7, yield: -0.1 ± 0.3) were more effective in warm climates. This study highlights the importance of carefully managing croplands to sequester SOC without sacrifice in yield while limiting CH4 emissions from rice paddies
Beschreibung:Date Completed 20.09.2021
Date Revised 23.02.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.15796