Hierarchical Connectivity-Centered Clustering for Unsupervised Domain Adaptation on Person Re-Identification

Unsupervised domain adaptation (UDA) on person Re-Identification (ReID) aims to transfer the knowledge from a labeled source domain to an unlabeled target domain. Recent works mainly optimize the ReID models with pseudo labels generated by unsupervised clustering on the target domain. However, the p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 08., Seite 6715-6729
1. Verfasser: Bai, Yan (VerfasserIn)
Weitere Verfasser: Wang, Ce, Lou, Yihang, Liu, Jun, Duan, Ling-Yu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32782929X
003 DE-627
005 20231225201640.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3094140  |2 doi 
028 5 2 |a pubmed24n1092.xml 
035 |a (DE-627)NLM32782929X 
035 |a (NLM)34236966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Yan  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Connectivity-Centered Clustering for Unsupervised Domain Adaptation on Person Re-Identification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.07.2021 
500 |a Date Revised 27.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Unsupervised domain adaptation (UDA) on person Re-Identification (ReID) aims to transfer the knowledge from a labeled source domain to an unlabeled target domain. Recent works mainly optimize the ReID models with pseudo labels generated by unsupervised clustering on the target domain. However, the pseudo labels generated by the unsupervised clustering methods are often unreliable, due to the severe intra-person variations and complicated cluster structures in the practical application scenarios. In this work, to handle the complicated cluster structures, we propose a novel learnable Hierarchical Connectivity-Centered (HCC) clustering scheme by Graph Convolutional Networks (GCNs) to generate more reliable pseudo labels. Our HCC scheme learns the complicated cluster structure by hierarchically estimating the connectivity among samples from the vertex level to cluster level in a graph representation, and thereby progressively refines the pseudo labels. Additionally, to handle the intra-person variations in clustering, we propose a novel relation feature for HCC clustering, which exploits the identities from the source domain as references to represent target domain samples. Experiments demonstrate that our method is able to achieve state-of-the art performance on three challenging benchmarks 
650 4 |a Journal Article 
700 1 |a Wang, Ce  |e verfasserin  |4 aut 
700 1 |a Lou, Yihang  |e verfasserin  |4 aut 
700 1 |a Liu, Jun  |e verfasserin  |4 aut 
700 1 |a Duan, Ling-Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 08., Seite 6715-6729  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:08  |g pages:6715-6729 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3094140  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 08  |h 6715-6729