Detection of the metabolic response to drought stress using hyperspectral reflectance

Published by Oxford University Press on behalf of the Society for Experimental Biology 2021.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 72(2021), 18 vom: 30. Sept., Seite 6474-6489
1. Verfasser: Burnett, Angela C (VerfasserIn)
Weitere Verfasser: Serbin, Shawn P, Davidson, Kenneth J, Ely, Kim S, Rogers, Alistair
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Abscisic acid (ABA) climate change crop breeding and management drought stress leaf reflectance metabolites remote sensing stress responses mehr... water deficit water stress Abscisic Acid 72S9A8J5GW
LEADER 01000naa a22002652 4500
001 NLM327815299
003 DE-627
005 20231225201622.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erab255  |2 doi 
028 5 2 |a pubmed24n1092.xml 
035 |a (DE-627)NLM327815299 
035 |a (NLM)34235536 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Burnett, Angela C  |e verfasserin  |4 aut 
245 1 0 |a Detection of the metabolic response to drought stress using hyperspectral reflectance 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.10.2021 
500 |a Date Revised 20.10.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Published by Oxford University Press on behalf of the Society for Experimental Biology 2021. 
520 |a Drought is the most important limitation on crop yield. Understanding and detecting drought stress in crops is vital for improving water use efficiency through effective breeding and management. Leaf reflectance spectroscopy offers a rapid, non-destructive alternative to traditional techniques for measuring plant traits involved in a drought response. We measured drought stress in six glasshouse-grown agronomic species using physiological, biochemical, and spectral data. In contrast to physiological traits, leaf metabolite concentrations revealed drought stress before it was visible to the naked eye. We used full-spectrum leaf reflectance data to predict metabolite concentrations using partial least-squares regression, with validation R2 values of 0.49-0.87. We show for the first time that spectroscopy may be used for the quantitative estimation of proline and abscisic acid, demonstrating the first use of hyperspectral data to detect a phytohormone. We used linear discriminant analysis and partial least squares discriminant analysis to differentiate between watered plants and those subjected to drought based on measured traits (accuracy: 71%) and raw spectral data (66%). Finally, we validated our glasshouse-developed models in an independent field trial. We demonstrate that spectroscopy can detect drought stress via underlying biochemical changes, before visual differences occur, representing a powerful advance for measuring limitations on yield 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Abscisic acid (ABA) 
650 4 |a climate change 
650 4 |a crop breeding and management 
650 4 |a drought stress 
650 4 |a leaf reflectance 
650 4 |a metabolites 
650 4 |a remote sensing 
650 4 |a stress responses 
650 4 |a water deficit 
650 4 |a water stress 
650 7 |a Abscisic Acid  |2 NLM 
650 7 |a 72S9A8J5GW  |2 NLM 
700 1 |a Serbin, Shawn P  |e verfasserin  |4 aut 
700 1 |a Davidson, Kenneth J  |e verfasserin  |4 aut 
700 1 |a Ely, Kim S  |e verfasserin  |4 aut 
700 1 |a Rogers, Alistair  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 72(2021), 18 vom: 30. Sept., Seite 6474-6489  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:72  |g year:2021  |g number:18  |g day:30  |g month:09  |g pages:6474-6489 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erab255  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2021  |e 18  |b 30  |c 09  |h 6474-6489