OIFlow : Occlusion-Inpainting Optical Flow Estimation by Unsupervised Learning

Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide effective information for optical flow learning. In...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 6420-6433
1. Verfasser: Liu, Shuaicheng (VerfasserIn)
Weitere Verfasser: Luo, Kunming, Ye, Nianjin, Wang, Chuan, Wang, Jue, Zeng, Bing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM327789352
003 DE-627
005 20231225201549.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3093781  |2 doi 
028 5 2 |a pubmed24n1092.xml 
035 |a (DE-627)NLM327789352 
035 |a (NLM)34232877 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Shuaicheng  |e verfasserin  |4 aut 
245 1 0 |a OIFlow  |b Occlusion-Inpainting Optical Flow Estimation by Unsupervised Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Occlusion is an inevitable and critical problem in unsupervised optical flow learning. Existing methods either treat occlusions equally as non-occluded regions or simply remove them to avoid incorrectness. However, the occlusion regions can provide effective information for optical flow learning. In this paper, we present OIFlow, an occlusion-inpainting framework to make full use of occlusion regions. Specifically, a new appearance-flow network is proposed to inpaint occluded flows based on the image content. Moreover, a boundary dilated warp is proposed to deal with occlusions caused by displacement beyond the image border. We conduct experiments on multiple leading flow benchmark datasets such as Flying Chairs, KITTI and MPI-Sintel, which demonstrate that the performance is significantly improved by our proposed occlusion handling framework 
650 4 |a Journal Article 
700 1 |a Luo, Kunming  |e verfasserin  |4 aut 
700 1 |a Ye, Nianjin  |e verfasserin  |4 aut 
700 1 |a Wang, Chuan  |e verfasserin  |4 aut 
700 1 |a Wang, Jue  |e verfasserin  |4 aut 
700 1 |a Zeng, Bing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 07., Seite 6420-6433  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:07  |g pages:6420-6433 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3093781  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 07  |h 6420-6433