A Non-Local Superpatch-Based Algorithm Exploiting Low Rank Prior for Restoration of Hyperspectral Images

We propose a novel algorithm for the restoration of a degraded hyperspectral image. The proposed algorithm exploits the spatial as well as the spectral redundancy of a degraded hyperspectral image in order to restore it without having any prior knowledge about the type of degradation present. Our wo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 6335-6348
1. Verfasser: Sarkar, Sourish (VerfasserIn)
Weitere Verfasser: Sahay, Rajiv Ranjan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM327789344
003 DE-627
005 20231225201549.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3093780  |2 doi 
028 5 2 |a pubmed24n1092.xml 
035 |a (DE-627)NLM327789344 
035 |a (NLM)34232876 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sarkar, Sourish  |e verfasserin  |4 aut 
245 1 2 |a A Non-Local Superpatch-Based Algorithm Exploiting Low Rank Prior for Restoration of Hyperspectral Images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a novel algorithm for the restoration of a degraded hyperspectral image. The proposed algorithm exploits the spatial as well as the spectral redundancy of a degraded hyperspectral image in order to restore it without having any prior knowledge about the type of degradation present. Our work uses superpatches to exploit the spatial and spectral redundancies. We formulate a restoration algorithm incorporating structural similarity index measure as the data fidelity term and nuclear norm as the regularization term. The proposed algorithm is able to cope with additive Gaussian noise, signal dependent Poisson noise, mixed Poisson-Gaussian noise and can restore a hyperspectral image corrupted by dead lines and stripes. As we demonstrate with the aid of extensive experiments, our algorithm is capable of recovering the spectra even in the case of severe degradation. A comparison with the state-of-the-art low rank hyperspectral image restoration methods via experiments with real world and simulated data establishes the competitiveness of the proposed algorithm with the existing methods 
650 4 |a Journal Article 
700 1 |a Sahay, Rajiv Ranjan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 07., Seite 6335-6348  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:07  |g pages:6335-6348 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3093780  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 07  |h 6335-6348