|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM327789344 |
003 |
DE-627 |
005 |
20231225201549.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2021.3093780
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1092.xml
|
035 |
|
|
|a (DE-627)NLM327789344
|
035 |
|
|
|a (NLM)34232876
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sarkar, Sourish
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A Non-Local Superpatch-Based Algorithm Exploiting Low Rank Prior for Restoration of Hyperspectral Images
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 14.07.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We propose a novel algorithm for the restoration of a degraded hyperspectral image. The proposed algorithm exploits the spatial as well as the spectral redundancy of a degraded hyperspectral image in order to restore it without having any prior knowledge about the type of degradation present. Our work uses superpatches to exploit the spatial and spectral redundancies. We formulate a restoration algorithm incorporating structural similarity index measure as the data fidelity term and nuclear norm as the regularization term. The proposed algorithm is able to cope with additive Gaussian noise, signal dependent Poisson noise, mixed Poisson-Gaussian noise and can restore a hyperspectral image corrupted by dead lines and stripes. As we demonstrate with the aid of extensive experiments, our algorithm is capable of recovering the spectra even in the case of severe degradation. A comparison with the state-of-the-art low rank hyperspectral image restoration methods via experiments with real world and simulated data establishes the competitiveness of the proposed algorithm with the existing methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Sahay, Rajiv Ranjan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 07., Seite 6335-6348
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:07
|g pages:6335-6348
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2021.3093780
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 07
|h 6335-6348
|