DeepGD : A Deep Learning Framework for Graph Drawing Using GNN

In the past decades, many graph drawing techniques have been proposed for generating aesthetically pleasing graph layouts. However, it remains a challenging task since different layout methods tend to highlight different characteristics of the graphs. Recently, studies on deep-learning-based graph d...

Description complète

Détails bibliographiques
Publié dans:IEEE computer graphics and applications. - 1991. - 41(2021), 5 vom: 07. Sept., Seite 32-44
Auteur principal: Wang, Xiaoqi (Auteur)
Autres auteurs: Yen, Kevin, Hu, Yifan, Shen, Han-Wei
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE computer graphics and applications
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM327789336
003 DE-627
005 20250302030556.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/MCG.2021.3093908  |2 doi 
028 5 2 |a pubmed25n1092.xml 
035 |a (DE-627)NLM327789336 
035 |a (NLM)34232870 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xiaoqi  |e verfasserin  |4 aut 
245 1 0 |a DeepGD  |b A Deep Learning Framework for Graph Drawing Using GNN 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.09.2021 
500 |a Date Revised 27.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the past decades, many graph drawing techniques have been proposed for generating aesthetically pleasing graph layouts. However, it remains a challenging task since different layout methods tend to highlight different characteristics of the graphs. Recently, studies on deep-learning-based graph drawing algorithms have emerged but they are often not generalizable to arbitrary graphs without retraining. In this article, we propose a Convolutional-Graph-Neural-Network-based deep learning framework, DeepGD, which can draw arbitrary graphs once trained. It attempts to generate layouts by compromising among multiple prespecified aesthetics considering a good graph layout usually complies with multiple aesthetics simultaneously. In order to balance the tradeoff, we propose two adaptive training strategies, which adjust the weight factor of each aesthetic dynamically during training. The quantitative and qualitative assessment of DeepGD demonstrates that it is capable of drawing arbitrary graphs effectively, while being flexible at accommodating different aesthetic criteria 
650 4 |a Journal Article 
700 1 |a Yen, Kevin  |e verfasserin  |4 aut 
700 1 |a Hu, Yifan  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE computer graphics and applications  |d 1991  |g 41(2021), 5 vom: 07. Sept., Seite 32-44  |w (DE-627)NLM098172794  |x 1558-1756  |7 nnas 
773 1 8 |g volume:41  |g year:2021  |g number:5  |g day:07  |g month:09  |g pages:32-44 
856 4 0 |u http://dx.doi.org/10.1109/MCG.2021.3093908  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2021  |e 5  |b 07  |c 09  |h 32-44