An approach to forecast impact of Covid-19 using supervised machine learning model

© 2021 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Software: practice & experience. - 1998. - 52(2022), 4 vom: 22. Apr., Seite 824-840
1. Verfasser: Mohan, Senthilkumar (VerfasserIn)
Weitere Verfasser: A, John, Abugabah, Ahed, M, Adimoolam, Kumar Singh, Shubham, Kashif Bashir, Ali, Sanzogni, Louis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Software: practice & experience
Schlagworte:Journal Article Covid‐19 ensemble learning healthcare machine learning prediction
LEADER 01000caa a22002652 4500
001 NLM327767979
003 DE-627
005 20240830231917.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/spe.2969  |2 doi 
028 5 2 |a pubmed24n1517.xml 
035 |a (DE-627)NLM327767979 
035 |a (NLM)34230701 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mohan, Senthilkumar  |e verfasserin  |4 aut 
245 1 3 |a An approach to forecast impact of Covid-19 using supervised machine learning model 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 John Wiley & Sons, Ltd. 
520 |a The Covid-19 pandemic has emerged as one of the most disquieting worldwide public health emergencies of the 21st century and has thrown into sharp relief, among other factors, the dire need for robust forecasting techniques for disease detection, alleviation as well as prevention. Forecasting has been one of the most powerful statistical methods employed the world over in various disciplines for detecting and analyzing trends and predicting future outcomes based on which timely and mitigating actions can be undertaken. To that end, several statistical methods and machine learning techniques have been harnessed depending upon the analysis desired and the availability of data. Historically speaking, most predictions thus arrived at have been short term and country-specific in nature. In this work, multimodel machine learning technique is called EAMA for forecasting Covid-19 related parameters in the long-term both within India and on a global scale have been proposed. This proposed EAMA hybrid model is well-suited to predictions based on past and present data. For this study, two datasets from the Ministry of Health & Family Welfare of India and Worldometers, respectively, have been exploited. Using these two datasets, long-term data predictions for both India and the world have been outlined, and observed that predicted data being very similar to real-time values. The experiment also conducted for statewise predictions of India and the countrywise predictions across the world and it has been included in the Appendix 
650 4 |a Journal Article 
650 4 |a Covid‐19 
650 4 |a ensemble learning 
650 4 |a healthcare 
650 4 |a machine learning 
650 4 |a prediction 
700 1 |a A, John  |e verfasserin  |4 aut 
700 1 |a Abugabah, Ahed  |e verfasserin  |4 aut 
700 1 |a M, Adimoolam  |e verfasserin  |4 aut 
700 1 |a Kumar Singh, Shubham  |e verfasserin  |4 aut 
700 1 |a Kashif Bashir, Ali  |e verfasserin  |4 aut 
700 1 |a Sanzogni, Louis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Software: practice & experience  |d 1998  |g 52(2022), 4 vom: 22. Apr., Seite 824-840  |w (DE-627)NLM098130218  |x 0038-0644  |7 nnns 
773 1 8 |g volume:52  |g year:2022  |g number:4  |g day:22  |g month:04  |g pages:824-840 
856 4 0 |u http://dx.doi.org/10.1002/spe.2969  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_50 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2022  |e 4  |b 22  |c 04  |h 824-840