Learning Efficient Hash Codes for Fast Graph-Based Data Similarity Retrieval

Traditional operations, e.g. graph edit distance (GED), are no longer suitable for processing the massive quantities of graph-structured data now available, due to their irregular structures and high computational complexities. With the advent of graph neural networks (GNNs), the problems of graph r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 03., Seite 6321-6334
1. Verfasser: Wang, Jinbao (VerfasserIn)
Weitere Verfasser: Xu, Shuo, Zheng, Feng, Lu, Ke, Song, Jingkuan, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM327709650
003 DE-627
005 20250302023706.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3093387  |2 doi 
028 5 2 |a pubmed25n1092.xml 
035 |a (DE-627)NLM327709650 
035 |a (NLM)34224353 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jinbao  |e verfasserin  |4 aut 
245 1 0 |a Learning Efficient Hash Codes for Fast Graph-Based Data Similarity Retrieval 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Traditional operations, e.g. graph edit distance (GED), are no longer suitable for processing the massive quantities of graph-structured data now available, due to their irregular structures and high computational complexities. With the advent of graph neural networks (GNNs), the problems of graph representation and graph similarity search have drawn particular attention in the field of computer vision. However, GNNs have been less studied for efficient and fast retrieval after graph representation. To represent graph-based data, and maintain fast retrieval while doing so, we introduce an efficient hash model with graph neural networks (HGNN) for a newly designed task (i.e. fast graph-based data retrieval). Due to its flexibility, HGNN can be implemented in both an unsupervised and supervised manner. Specifically, by adopting a graph neural network and hash learning algorithms, HGNN can effectively learn a similarity-preserving graph representation and compute pair-wise similarity or provide classification via low-dimensional compact hash codes. To the best of our knowledge, our model is the first to address graph hashing representation in the Hamming space. Our experimental results reach comparable prediction accuracy to full-precision methods and can even outperform traditional models in some cases. In real-world applications, using hash codes can greatly benefit systems with smaller memory capacities and accelerate the retrieval speed of graph-structured data. Hence, we believe the proposed HGNN has great potential in further research 
650 4 |a Journal Article 
700 1 |a Xu, Shuo  |e verfasserin  |4 aut 
700 1 |a Zheng, Feng  |e verfasserin  |4 aut 
700 1 |a Lu, Ke  |e verfasserin  |4 aut 
700 1 |a Song, Jingkuan  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 03., Seite 6321-6334  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:03  |g pages:6321-6334 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3093387  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 03  |h 6321-6334