Deep convolution neural networks to differentiate between COVID-19 and other pulmonary abnormalities on chest radiographs : Evaluation using internal and external datasets

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 31(2021), 3 vom: 28. Sept., Seite 1087-1104
1. Verfasser: Cho, Yongwon (VerfasserIn)
Weitere Verfasser: Hwang, Sung Ho, Oh, Yu-Whan, Ham, Byung-Joo, Kim, Min Ju, Park, Beom Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article COVID‐19 chest radiography computer‐aided diagnosis (CAD) deep learning lung diseases
LEADER 01000caa a22002652 4500
001 NLM327666056
003 DE-627
005 20240829231853.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22595  |2 doi 
028 5 2 |a pubmed24n1516.xml 
035 |a (DE-627)NLM327666056 
035 |a (NLM)34219953 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cho, Yongwon  |e verfasserin  |4 aut 
245 1 0 |a Deep convolution neural networks to differentiate between COVID-19 and other pulmonary abnormalities on chest radiographs  |b Evaluation using internal and external datasets 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a We aimed to evaluate the performance of convolutional neural networks (CNNs) in the classification of coronavirus disease 2019 (COVID-19) disease using normal, pneumonia, and COVID-19 chest radiographs (CXRs). First, we collected 9194 CXRs from open datasets and 58 from the Korea University Anam Hospital (KUAH). The number of normal, pneumonia, and COVID-19 CXRs were 4580, 3884, and 730, respectively. The CXRs obtained from the open dataset were randomly assigned to the training, tuning, and test sets in a 70:10:20 ratio. For external validation, the KUAH (20 normal, 20 pneumonia, and 18 COVID-19) dataset, verified by radiologists using computed tomography, was used. Subsequently, transfer learning was conducted using DenseNet169, InceptionResNetV2, and Xception to identify COVID-19 using open datasets (internal) and the KUAH dataset (external) with histogram matching. Gradient-weighted class activation mapping was used for the visualization of abnormal patterns in CXRs. The average AUC and accuracy of the multiscale and mixed-COVID-19Net using three CNNs over five folds were (0.99 ± 0.01 and 92.94% ± 0.45%), (0.99 ± 0.01 and 93.12% ± 0.23%), and (0.99 ± 0.01 and 93.57% ± 0.29%), respectively, using the open datasets (internal). Furthermore, these values were (0.75 and 74.14%), (0.72 and 68.97%), and (0.77 and 68.97%), respectively, for the best model among the fivefold cross-validation with the KUAH dataset (external) using domain adaptation. The various state-of-the-art models trained on open datasets show satisfactory performance for clinical interpretation. Furthermore, the domain adaptation for external datasets was found to be important for detecting COVID-19 as well as other diseases 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a chest radiography 
650 4 |a computer‐aided diagnosis (CAD) 
650 4 |a deep learning 
650 4 |a lung diseases 
700 1 |a Hwang, Sung Ho  |e verfasserin  |4 aut 
700 1 |a Oh, Yu-Whan  |e verfasserin  |4 aut 
700 1 |a Ham, Byung-Joo  |e verfasserin  |4 aut 
700 1 |a Kim, Min Ju  |e verfasserin  |4 aut 
700 1 |a Park, Beom Jin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 31(2021), 3 vom: 28. Sept., Seite 1087-1104  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnns 
773 1 8 |g volume:31  |g year:2021  |g number:3  |g day:28  |g month:09  |g pages:1087-1104 
856 4 0 |u http://dx.doi.org/10.1002/ima.22595  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2021  |e 3  |b 28  |c 09  |h 1087-1104