Task-Driven Semantic Coding via Reinforcement Learning

Task-driven semantic video/image coding has drawn considerable attention with the development of intelligent media applications, such as license plate detection, face detection, and medical diagnosis, which focuses on maintaining the semantic information of videos/images. Deep neural network (DNN)-b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 04., Seite 6307-6320
1. Verfasser: Li, Xin (VerfasserIn)
Weitere Verfasser: Shi, Jun, Chen, Zhibo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM327607114
003 DE-627
005 20250302015035.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3091909  |2 doi 
028 5 2 |a pubmed25n1091.xml 
035 |a (DE-627)NLM327607114 
035 |a (NLM)34214035 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xin  |e verfasserin  |4 aut 
245 1 0 |a Task-Driven Semantic Coding via Reinforcement Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.07.2021 
500 |a Date Revised 14.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Task-driven semantic video/image coding has drawn considerable attention with the development of intelligent media applications, such as license plate detection, face detection, and medical diagnosis, which focuses on maintaining the semantic information of videos/images. Deep neural network (DNN)-based codecs have been studied for this purpose due to their inherent end-to-end optimization mechanism. However, the traditional hybrid coding framework cannot be optimized in an end-to-end manner, which makes task-driven semantic fidelity metric unable to be automatically integrated into the rate-distortion optimization process. Therefore, it is still attractive and challenging to implement task-driven semantic coding with the traditional hybrid coding framework, which should still be widely used in practical industry for a long time. To solve this challenge, we design semantic maps for different tasks to extract the pixelwise semantic fidelity for videos/images. Instead of directly integrating the semantic fidelity metric into traditional hybrid coding framework, we implement task-driven semantic coding by implementing semantic bit allocation based on reinforcement learning (RL). We formulate the semantic bit allocation problem as a Markov decision process (MDP) and utilize one RL agent to automatically determine the quantization parameters (QPs) for different coding units (CUs) according to the task-driven semantic fidelity metric. Extensive experiments on different tasks, such as classification, detection and segmentation, have demonstrated the superior performance of our approach by achieving an average bitrate saving of 34.39% to 52.62% over the High Efficiency Video Coding (H.265/HEVC) anchor under equivalent task-related semantic fidelity 
650 4 |a Journal Article 
700 1 |a Shi, Jun  |e verfasserin  |4 aut 
700 1 |a Chen, Zhibo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 04., Seite 6307-6320  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:04  |g pages:6307-6320 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3091909  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 04  |h 6307-6320