Affective Image Content Analysis : Two Decades Review and New Perspectives

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 02. Okt., Seite 6729-6751
1. Verfasser: Zhao, Sicheng (VerfasserIn)
Weitere Verfasser: Yao, Xingxu, Yang, Jufeng, Jia, Guoli, Ding, Guiguang, Chua, Tat-Seng, Schuller, Bjorn W, Keutzer, Kurt
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM327607106
003 DE-627
005 20231225201143.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3094362  |2 doi 
028 5 2 |a pubmed24n1091.xml 
035 |a (DE-627)NLM327607106 
035 |a (NLM)34214034 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Sicheng  |e verfasserin  |4 aut 
245 1 0 |a Affective Image Content Analysis  |b Two Decades Review and New Perspectives 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges - the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yao, Xingxu  |e verfasserin  |4 aut 
700 1 |a Yang, Jufeng  |e verfasserin  |4 aut 
700 1 |a Jia, Guoli  |e verfasserin  |4 aut 
700 1 |a Ding, Guiguang  |e verfasserin  |4 aut 
700 1 |a Chua, Tat-Seng  |e verfasserin  |4 aut 
700 1 |a Schuller, Bjorn W  |e verfasserin  |4 aut 
700 1 |a Keutzer, Kurt  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 02. Okt., Seite 6729-6751  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:02  |g month:10  |g pages:6729-6751 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3094362  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 02  |c 10  |h 6729-6751