Using Microemulsion Phase Behavior as a Predictive Model for Lecithin-Tween 80 Marine Oil Dispersant Effectiveness

Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 37(2021), 27 vom: 13. Juli, Seite 8115-8128
1. Verfasser: Corcoran, Louis G (VerfasserIn)
Weitere Verfasser: Saldana Almaraz, Brian A, Amen, Kamilah Y, Bothun, Geoffrey D, Raghavan, Srinivasa R, John, Vijay T, McCormick, Alon V, Penn, R Lee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Lecithins Petroleum Polysorbates Surface-Active Agents Water Pollutants, Chemical
LEADER 01000naa a22002652 4500
001 NLM327383488
003 DE-627
005 20231225200651.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c00651  |2 doi 
028 5 2 |a pubmed24n1091.xml 
035 |a (DE-627)NLM327383488 
035 |a (NLM)34191521 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Corcoran, Louis G  |e verfasserin  |4 aut 
245 1 0 |a Using Microemulsion Phase Behavior as a Predictive Model for Lecithin-Tween 80 Marine Oil Dispersant Effectiveness 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.07.2021 
500 |a Date Revised 16.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Lecithins  |2 NLM 
650 7 |a Petroleum  |2 NLM 
650 7 |a Polysorbates  |2 NLM 
650 7 |a Surface-Active Agents  |2 NLM 
650 7 |a Water Pollutants, Chemical  |2 NLM 
700 1 |a Saldana Almaraz, Brian A  |e verfasserin  |4 aut 
700 1 |a Amen, Kamilah Y  |e verfasserin  |4 aut 
700 1 |a Bothun, Geoffrey D  |e verfasserin  |4 aut 
700 1 |a Raghavan, Srinivasa R  |e verfasserin  |4 aut 
700 1 |a John, Vijay T  |e verfasserin  |4 aut 
700 1 |a McCormick, Alon V  |e verfasserin  |4 aut 
700 1 |a Penn, R Lee  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 37(2021), 27 vom: 13. Juli, Seite 8115-8128  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:27  |g day:13  |g month:07  |g pages:8115-8128 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c00651  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 27  |b 13  |c 07  |h 8115-8128