Over a decade of social opinion mining : a systematic review

© The Author(s) 2021.

Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence review. - 1998. - 54(2021), 7 vom: 29., Seite 4873-4965
1. Verfasser: Cortis, Keith (VerfasserIn)
Weitere Verfasser: Davis, Brian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Artificial intelligence review
Schlagworte:Journal Article Artificial intelligence Emotion analysis Irony detection Microblogs Natural language processing Opinion mining Sarcasm detection Sentiment analysis Social data mehr... Social data analysis Social media Social networks Social opinion mining Subjectivity analysis Survey Systematic review
LEADER 01000caa a22002652 4500
001 NLM327352280
003 DE-627
005 20240823231912.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10462-021-10030-2  |2 doi 
028 5 2 |a pubmed24n1510.xml 
035 |a (DE-627)NLM327352280 
035 |a (NLM)34188346 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cortis, Keith  |e verfasserin  |4 aut 
245 1 0 |a Over a decade of social opinion mining  |b a systematic review 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2021. 
520 |a Social media popularity and importance is on the increase due to people using it for various types of social interaction across multiple channels. This systematic review focuses on the evolving research area of Social Opinion Mining, tasked with the identification of multiple opinion dimensions, such as subjectivity, sentiment polarity, emotion, affect, sarcasm and irony, from user-generated content represented across multiple social media platforms and in various media formats, like text, image, video and audio. Through Social Opinion Mining, natural language can be understood in terms of the different opinion dimensions, as expressed by humans. This contributes towards the evolution of Artificial Intelligence which in turn helps the advancement of several real-world use cases, such as customer service and decision making. A thorough systematic review was carried out on Social Opinion Mining research which totals 485 published studies and spans a period of twelve years between 2007 and 2018. The in-depth analysis focuses on the social media platforms, techniques, social datasets, language, modality, tools and technologies, and other aspects derived. Social Opinion Mining can be utilised in many application areas, ranging from marketing, advertising and sales for product/service management, and in multiple domains and industries, such as politics, technology, finance, healthcare, sports and government. The latest developments in Social Opinion Mining beyond 2018 are also presented together with future research directions, with the aim of leaving a wider academic and societal impact in several real-world applications 
650 4 |a Journal Article 
650 4 |a Artificial intelligence 
650 4 |a Emotion analysis 
650 4 |a Irony detection 
650 4 |a Microblogs 
650 4 |a Natural language processing 
650 4 |a Opinion mining 
650 4 |a Sarcasm detection 
650 4 |a Sentiment analysis 
650 4 |a Social data 
650 4 |a Social data analysis 
650 4 |a Social media 
650 4 |a Social networks 
650 4 |a Social opinion mining 
650 4 |a Subjectivity analysis 
650 4 |a Survey 
650 4 |a Systematic review 
700 1 |a Davis, Brian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Artificial intelligence review  |d 1998  |g 54(2021), 7 vom: 29., Seite 4873-4965  |w (DE-627)NLM098184490  |x 0269-2821  |7 nnns 
773 1 8 |g volume:54  |g year:2021  |g number:7  |g day:29  |g pages:4873-4965 
856 4 0 |u http://dx.doi.org/10.1007/s10462-021-10030-2  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2021  |e 7  |b 29  |h 4873-4965