Unsupervised Discrete Hashing With Affinity Similarity

In recent years, supervised hashing has been validated to greatly boost the performance of image retrieval. However, the label-hungry property requires massive label collection, making it intractable in practical scenarios. To liberate the model training procedure from laborious manual annotations,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 29., Seite 6130-6141
1. Verfasser: Jin, Sheng (VerfasserIn)
Weitere Verfasser: Yao, Hongxun, Zhou, Qin, Liu, Yao, Huang, Jianqiang, Hua, Xiansheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32732550X
003 DE-627
005 20231225200534.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3091895  |2 doi 
028 5 2 |a pubmed24n1091.xml 
035 |a (DE-627)NLM32732550X 
035 |a (NLM)34185644 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jin, Sheng  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Discrete Hashing With Affinity Similarity 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, supervised hashing has been validated to greatly boost the performance of image retrieval. However, the label-hungry property requires massive label collection, making it intractable in practical scenarios. To liberate the model training procedure from laborious manual annotations, some unsupervised methods are proposed. However, the following two factors make unsupervised algorithms inferior to their supervised counterparts: (1) Without manually-defined labels, it is difficult to capture the semantic information across data, which is of crucial importance to guide robust binary code learning. (2) The widely adopted relaxation on binary constraints results in quantization error accumulation in the optimization procedure. To address the above-mentioned problems, in this paper, we propose a novel Unsupervised Discrete Hashing method (UDH). Specifically, to capture the semantic information, we propose a balanced graph-based semantic loss which explores the affinity priors in the original feature space. Then, we propose a novel self-supervised loss, termed orthogonal consistent loss, which can leverage semantic loss of instance and impose independence of codes. Moreover, by integrating the discrete optimization into the proposed unsupervised framework, the binary constraints are consistently preserved, alleviating the influence of quantization errors. Extensive experiments demonstrate that UDH outperforms state-of-the-art unsupervised methods for image retrieval 
650 4 |a Journal Article 
700 1 |a Yao, Hongxun  |e verfasserin  |4 aut 
700 1 |a Zhou, Qin  |e verfasserin  |4 aut 
700 1 |a Liu, Yao  |e verfasserin  |4 aut 
700 1 |a Huang, Jianqiang  |e verfasserin  |4 aut 
700 1 |a Hua, Xiansheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 29., Seite 6130-6141  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:29  |g pages:6130-6141 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3091895  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 29  |h 6130-6141