A scalable framework for smart COVID surveillance in the workplace using Deep Neural Networks and cloud computing

© 2021 The Authors. Expert Systems published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems. - 1998. - 39(2022), 3 vom: 27. März, Seite e12704
1. Verfasser: Singh, Ajay (VerfasserIn)
Weitere Verfasser: Jindal, Vaibhav, Sandhu, Rajinder, Chang, Victor
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems
Schlagworte:Journal Article COVID cloud computing corona deep neural networks fog computing pandemic
LEADER 01000caa a22002652 4500
001 NLM327240946
003 DE-627
005 20241004231829.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1111/exsy.12704  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM327240946 
035 |a (NLM)34177036 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Singh, Ajay  |e verfasserin  |4 aut 
245 1 2 |a A scalable framework for smart COVID surveillance in the workplace using Deep Neural Networks and cloud computing 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Expert Systems published by John Wiley & Sons Ltd. 
520 |a A smart and scalable system is required to schedule various machine learning applications to control pandemics like COVID-19 using computing infrastructure provided by cloud and fog computing. This paper proposes a framework that considers the use case of smart office surveillance to monitor workplaces for detecting possible violations of COVID effectively. The proposed framework uses deep neural networks, fog computing and cloud computing to develop a scalable and time-sensitive infrastructure that can detect two major violations: wearing a mask and maintaining a minimum distance of 6 feet between employees in the office environment. The proposed framework is developed with the vision to integrate multiple machine learning applications and handle the computing infrastructures for pandemic applications. The proposed framework can be used by application developers for the rapid development of new applications based on the requirements and do not worry about scheduling. The proposed framework is tested for two independent applications and performed better than the traditional cloud environment in terms of latency and response time. The work done in this paper tries to bridge the gap between machine learning applications and their computing infrastructure for COVID-19 
650 4 |a Journal Article 
650 4 |a COVID 
650 4 |a cloud computing 
650 4 |a corona 
650 4 |a deep neural networks 
650 4 |a fog computing 
650 4 |a pandemic 
700 1 |a Jindal, Vaibhav  |e verfasserin  |4 aut 
700 1 |a Sandhu, Rajinder  |e verfasserin  |4 aut 
700 1 |a Chang, Victor  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems  |d 1998  |g 39(2022), 3 vom: 27. März, Seite e12704  |w (DE-627)NLM098187341  |x 1468-0394  |7 nnns 
773 1 8 |g volume:39  |g year:2022  |g number:3  |g day:27  |g month:03  |g pages:e12704 
856 4 0 |u http://dx.doi.org/10.1111/exsy.12704  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2022  |e 3  |b 27  |c 03  |h e12704