Deep K-SVD Denoising

This work considers noise removal from images, focusing on the well-known K-SVD denoising algorithm. This sparsity-based method was proposed in 2006, and for a short while it was considered as state-of-the-art. However, over the years it has been surpassed by other methods, including the recent deep...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 24., Seite 5944-5955
1. Verfasser: Scetbon, Meyer (VerfasserIn)
Weitere Verfasser: Elad, Michael, Milanfar, Peyman
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM327134038
003 DE-627
005 20250301233623.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3090531  |2 doi 
028 5 2 |a pubmed25n1090.xml 
035 |a (DE-627)NLM327134038 
035 |a (NLM)34166193 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Scetbon, Meyer  |e verfasserin  |4 aut 
245 1 0 |a Deep K-SVD Denoising 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.06.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work considers noise removal from images, focusing on the well-known K-SVD denoising algorithm. This sparsity-based method was proposed in 2006, and for a short while it was considered as state-of-the-art. However, over the years it has been surpassed by other methods, including the recent deep-learning-based newcomers. The question we address in this paper is whether K-SVD was brought to its peak in its original conception, or whether it can be made competitive again. The approach we take in answering this question is to redesign the algorithm to operate in a supervised manner. More specifically, we propose an end-to-end deep architecture with the exact K-SVD computational path, and train it for optimized denoising. Our work shows how to overcome difficulties arising in turning the K-SVD scheme into a differentiable, and thus learnable, machine. With a small number of parameters to learn and while preserving the original K-SVD essence, the proposed architecture is shown to outperform the classical K-SVD algorithm substantially, and getting closer to recent state-of-the-art learning-based denoising methods. Adopting a broader context, this work touches on themes around the design of deep-learning solutions for image processing tasks, while paving a bridge between classic methods and novel deep-learning-based ones 
650 4 |a Journal Article 
700 1 |a Elad, Michael  |e verfasserin  |4 aut 
700 1 |a Milanfar, Peyman  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 24., Seite 5944-5955  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:24  |g pages:5944-5955 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3090531  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 24  |h 5944-5955