|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM32713402X |
003 |
DE-627 |
005 |
20231225200113.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2021.3090521
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1090.xml
|
035 |
|
|
|a (DE-627)NLM32713402X
|
035 |
|
|
|a (NLM)34166192
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Yupeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Coarse-to-Fine Semantic Alignment for Cross-Modal Moment Localization
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 30.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Video moment localization, as an important branch of video content analysis, has attracted extensive attention in recent years. However, it is still in its infancy due to the following challenges: cross-modal semantic alignment and localization efficiency. To address these impediments, we present a cross-modal semantic alignment network. To be specific, we first design a video encoder to generate moment candidates, learn their representations, as well as model their semantic relevance. Meanwhile, we design a query encoder for diverse query intention understanding. Thereafter, we introduce a multi-granularity interaction module to deeply explore the semantic correlation between multi-modalities. Thereby, we can effectively complete target moment localization via sufficient cross-modal semantic understanding. Moreover, we introduce a semantic pruning strategy to reduce cross-modal retrieval overhead, improving localization efficiency. Experimental results on two benchmark datasets have justified the superiority of our model over several state-of-the-art competitors
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Nie, Liqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Kun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yinglong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hua, Xian-Sheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 30(2021) vom: 24., Seite 5933-5943
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2021
|g day:24
|g pages:5933-5943
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2021.3090521
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2021
|b 24
|h 5933-5943
|